Disentangled Graph Representation Based on Substructure-Aware Graph Optimal Matching Kernel Convolutional Networks
- URL: http://arxiv.org/abs/2504.16360v1
- Date: Wed, 23 Apr 2025 02:26:33 GMT
- Title: Disentangled Graph Representation Based on Substructure-Aware Graph Optimal Matching Kernel Convolutional Networks
- Authors: Mao Wang, Tao Wu, Xingping Xian, Shaojie Qiao, Weina Niu, Canyixing Cui,
- Abstract summary: Graphs effectively characterize relational data, driving graph representation learning methods.<n>Recent disentangled graph representation learning enhances interpretability by decoupling independent factors in graph data.<n>This paper proposes the Graph Optimal Matching Kernel Convolutional Network (GOMKCN) to address this limitation.
- Score: 4.912298804026689
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphs effectively characterize relational data, driving graph representation learning methods that uncover underlying predictive information. As state-of-the-art approaches, Graph Neural Networks (GNNs) enable end-to-end learning for diverse tasks. Recent disentangled graph representation learning enhances interpretability by decoupling independent factors in graph data. However, existing methods often implicitly and coarsely characterize graph structures, limiting structural pattern analysis within the graph. This paper proposes the Graph Optimal Matching Kernel Convolutional Network (GOMKCN) to address this limitation. We view graphs as node-centric subgraphs, where each subgraph acts as a structural factor encoding position-specific information. This transforms graph prediction into structural pattern recognition. Inspired by CNNs, GOMKCN introduces the Graph Optimal Matching Kernel (GOMK) as a convolutional operator, computing similarities between subgraphs and learnable graph filters. Mathematically, GOMK maps subgraphs and filters into a Hilbert space, representing graphs as point sets. Disentangled representations emerge from projecting subgraphs onto task-optimized filters, which adaptively capture relevant structural patterns via gradient descent. Crucially, GOMK incorporates local correspondences in similarity measurement, resolving the trade-off between differentiability and accuracy in graph kernels. Experiments validate that GOMKCN achieves superior accuracy and interpretability in graph pattern mining and prediction. The framework advances the theoretical foundation for disentangled graph representation learning.
Related papers
- SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
Graph neural networks (GNNs) have revolutionized the field of machine learning on non-Euclidean data such as graphs and networks.
We propose a concatenation-based graph convolution mechanism that injectively updates node representations.
We also design a novel graph pooling module, called WL-SortPool, to learn important subgraph patterns in a deep-learning manner.
arXiv Detail & Related papers (2024-04-21T13:11:59Z) - Learning Adaptive Neighborhoods for Graph Neural Networks [45.94778766867247]
Graph convolutional networks (GCNs) enable end-to-end learning on graph structured data.
We propose a novel end-to-end differentiable graph generator which builds graph topologies.
Our module can be readily integrated into existing pipelines involving graph convolution operations.
arXiv Detail & Related papers (2023-07-18T08:37:25Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
This paper focuses on creating a small graph to represent the original graph, so that GNNs trained on the size-reduced graph can make accurate predictions.
We view the original graph as a distribution of receptive fields and aim to synthesize a small graph whose receptive fields share a similar distribution.
arXiv Detail & Related papers (2022-06-28T02:10:05Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Graph Kernel Neural Networks [53.91024360329517]
We propose to use graph kernels, i.e. kernel functions that compute an inner product on graphs, to extend the standard convolution operator to the graph domain.
This allows us to define an entirely structural model that does not require computing the embedding of the input graph.
Our architecture allows to plug-in any type of graph kernels and has the added benefit of providing some interpretability.
arXiv Detail & Related papers (2021-12-14T14:48:08Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Graph Partitioning and Graph Neural Network based Hierarchical Graph
Matching for Graph Similarity Computation [5.710312846460821]
Graph similarity aims to predict a similarity score between one pair of graphs to facilitate downstream applications.
We propose a graph partitioning and graph neural network-based model, called PSimGNN, to effectively resolve this issue.
PSimGNN outperforms state-of-the-art methods in graph similarity computation tasks using approximate Graph Edit Distance (GED) as the graph similarity metric.
arXiv Detail & Related papers (2020-05-16T15:01:58Z) - Deep Graph Mapper: Seeing Graphs through the Neural Lens [4.401427499962144]
We merge Mapper with the expressive power of Graph Neural Networks (GNNs) to produce hierarchical, topologically-grounded visualisations of graphs.
These visualisations do not only help discern the structure of complex graphs but also provide a means of understanding the models applied to them for solving various tasks.
arXiv Detail & Related papers (2020-02-10T15:29:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.