論文の概要: Machine Learning for SAT: Restricted Heuristics and New Graph
Representations
- arxiv url: http://arxiv.org/abs/2307.09141v1
- Date: Tue, 18 Jul 2023 10:46:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-19 15:23:21.345866
- Title: Machine Learning for SAT: Restricted Heuristics and New Graph
Representations
- Title(参考訳): SATのための機械学習:制限付きヒューリスティックと新しいグラフ表現
- Authors: Mikhail Shirokikh, Ilya Shenbin, Anton Alekseev, Sergey Nikolenko
- Abstract要約: SATは、自動スケジューリングを含む多くのアプリケーションにおいて、基本的なNP完全問題である。
大きなインスタンスを解決するためには、SATソルバは、例えばDPLLとCDCLソルバの分岐変数を選択するなど、ブールアンに依存する必要がある。
我々は、訓練されたMLモデルでいくつかの初期ステップを行い、古典的なランタイムに制御をリリースする戦略を提案する。
- 参考スコア(独自算出の注目度): 0.8870188183999854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Boolean satisfiability (SAT) is a fundamental NP-complete problem with many
applications, including automated planning and scheduling. To solve large
instances, SAT solvers have to rely on heuristics, e.g., choosing a branching
variable in DPLL and CDCL solvers. Such heuristics can be improved with machine
learning (ML) models; they can reduce the number of steps but usually hinder
the running time because useful models are relatively large and slow. We
suggest the strategy of making a few initial steps with a trained ML model and
then releasing control to classical heuristics; this simplifies cold start for
SAT solving and can decrease both the number of steps and overall runtime, but
requires a separate decision of when to release control to the solver.
Moreover, we introduce a modification of Graph-Q-SAT tailored to SAT problems
converted from other domains, e.g., open shop scheduling problems. We validate
the feasibility of our approach with random and industrial SAT problems.
- Abstract(参考訳): Boolean satisfiability (SAT)は、自動計画やスケジューリングを含む多くのアプリケーションにおいて、基本的なNP完全問題である。
大きなインスタンスを解決するには、SATソルバは、例えばDPLLとCDCLソルバの分岐変数を選択するなど、ヒューリスティックに頼らなければならない。
このようなヒューリスティックは機械学習(ML)モデルによって改善され、ステップ数を削減できるが、有用なモデルは比較的大きく、遅いため、通常は実行時間を妨げている。
これによりSAT解のコールドスタートが簡単になり,ステップ数と実行時間の両方を削減できるが,解法に制御をいつリリースするかは別途決定する必要がある。
さらに、オープンショップスケジューリング問題など他のドメインから変換されたSAT問題に合わせたGraph-Q-SATの修正も導入する。
ランダムおよび産業的sat問題によるアプローチの実現可能性を検証する。
関連論文リスト
- Self-Satisfied: An end-to-end framework for SAT generation and prediction [0.7340017786387768]
高速SAT問題生成のためのハードウェアアクセラレーションアルゴリズムと幾何SAT符号化を導入する。
これらの進歩により、何千もの変数と数万の節でSAT問題へのアプローチをスケールできます。
私たちの研究の基本的な側面は、SATデータの本質と、機械学習モデルのトレーニングに適合する可能性に関するものです。
論文 参考訳(メタデータ) (2024-10-18T22:25:54Z) - GraSS: Combining Graph Neural Networks with Expert Knowledge for SAT Solver Selection [45.222591894755105]
インスタンスの3部グラフ表現に基づくSATソルバ自動選択のための新しいアプローチであるGraSSを提案する。
我々は、新しいノードの特徴設計のようなドメイン固有の決定でグラフ表現を豊かにします。
生の表現とドメイン固有の選択の組み合わせが実行時の改善につながることを実証する。
論文 参考訳(メタデータ) (2024-05-17T18:00:50Z) - A hybrid Quantum proposal to deal with 3-SAT problem [75.38606213726906]
本稿では,3SAT問題を解くためのハイブリッド量子コンピューティング戦略について述べる。
この近似の性能は、量子コンピューティングの観点から3-SATを扱う際に、一連の代表的なシナリオで検証されている。
論文 参考訳(メタデータ) (2023-06-07T12:19:22Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
本研究では,大規模言語モデル (LLM) の推論能力を向上させるために,新しい満足度支援言語モデリング (SatLM) 手法を提案する。
我々はLLMを用いて命令型プログラムではなく宣言型タスク仕様を生成し、既製の自動定理証明器を利用して最終解を導出する。
我々はSATLMを8つの異なるデータセット上で評価し、命令パラダイムにおいてプログラム支援されたLMよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-05-16T17:55:51Z) - W2SAT: Learning to generate SAT instances from Weighted Literal Incidence Graphs [11.139131079925113]
W2SATは、現実世界/産業インスタンスから固有の構造と特性を学ぶことによってSAT式を生成するフレームワークである。
Weighted Literal Incidence Graph (WLIG)と呼ばれる新しいSAT表現を導入する。
WLIGからSAT問題への復号化は、新しい丘登り最適化法で重なり合う斜角を見つけることをモデル化する。
論文 参考訳(メタデータ) (2023-02-01T06:30:41Z) - Estimating the hardness of SAT encodings for Logical Equivalence
Checking of Boolean circuits [58.83758257568434]
LEC インスタンスの SAT 符号化の硬さは SAT パーティショニングでは textitw.r. と推定できることを示す。
そこで本研究では, SAT符号化の難易度を精度良く推定できるパーティショニング法を提案する。
論文 参考訳(メタデータ) (2022-10-04T09:19:13Z) - DeepSAT: An EDA-Driven Learning Framework for SAT [9.111341161918375]
We present DeepSAT, a novel-to-end learning framework for the Boolean satisfiability (SAT) problem。
DeepSATは最先端の学習ベースSATソリューションに対して,大幅な精度向上を実現している。
論文 参考訳(メタデータ) (2022-05-27T03:20:42Z) - Machine Learning Methods in Solving the Boolean Satisfiability Problem [72.21206588430645]
本論文は, Boolean satisfiability problem (SAT) を機械学習技術で解くことに関する最近の文献をレビューする。
ML-SATソルバを手作り特徴を持つナイーブ分類器からNeuroSATのような新たなエンド・ツー・エンドSATソルバまで,進化するML-SATソルバについて検討する。
論文 参考訳(メタデータ) (2022-03-02T05:14:12Z) - Transformer-based Machine Learning for Fast SAT Solvers and Logic
Synthesis [63.53283025435107]
CNFベースのSATとMaxSATは論理合成と検証システムの中心である。
そこで本研究では,Transformerアーキテクチャから派生したワンショットモデルを用いて,MaxSAT問題の解法を提案する。
論文 参考訳(メタデータ) (2021-07-15T04:47:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。