論文の概要: Towards Sustainable Deep Learning for Multi-Label Classification on NILM
- arxiv url: http://arxiv.org/abs/2307.09244v1
- Date: Tue, 18 Jul 2023 13:23:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-19 14:44:28.697700
- Title: Towards Sustainable Deep Learning for Multi-Label Classification on NILM
- Title(参考訳): NILMを用いた複数ラベル分類のための持続的深層学習に向けて
- Authors: An\v{z}e Pirnat, Bla\v{z} Bertalani\v{c}, Gregor Cerar, Mihael
Mohor\v{c}i\v{c} and Carolina Fortuna
- Abstract要約: 非侵入負荷監視(Non-Inrusive Load Monitoring、NILM)は、単一計測点からアプライアンスレベルのデータを取得するプロセスである。
本稿では,NILMのマルチラベル分類を改良した新しいDLモデルを提案する。
最先端モデルと比較して、提案モデルではカーボンフットプリントを23%以上削減し、平均8ポイントの性能向上を実現している。
- 参考スコア(独自算出の注目度): 0.5809784853115825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-intrusive load monitoring (NILM) is the process of obtaining
appliance-level data from a single metering point, measuring total electricity
consumption of a household or a business. Appliance-level data can be directly
used for demand response applications and energy management systems as well as
for awareness raising and motivation for improvements in energy efficiency and
reduction in the carbon footprint. Recently, classical machine learning and
deep learning (DL) techniques became very popular and proved as highly
effective for NILM classification, but with the growing complexity these
methods are faced with significant computational and energy demands during both
their training and operation. In this paper, we introduce a novel DL model
aimed at enhanced multi-label classification of NILM with improved computation
and energy efficiency. We also propose a testing methodology for comparison of
different models using data synthesized from the measurement datasets so as to
better represent real-world scenarios. Compared to the state-of-the-art, the
proposed model has its carbon footprint reduced by more than 23% while
providing on average approximately 8 percentage points in performance
improvement when testing on data derived from REFIT and UK-DALE datasets.
- Abstract(参考訳): 非侵入負荷モニタリング(Non-Inrusive Load Monitoring, NILM)とは、家庭や事業の総消費電力を計測し、単一の計測点からアプライアンスレベルのデータを取得するプロセスである。
アプライアンスレベルのデータは、需要対応アプリケーションやエネルギー管理システム、および、エネルギー効率の改善と炭素フットプリントの削減に対する意識向上とモチベーションに直接使用することができる。
近年、古典的機械学習と深層学習(dl)技術が広く普及し、nilm分類に非常に効果的であることが証明されているが、複雑さが増すにつれて、これらの手法は訓練と運用の両方において重要な計算能力とエネルギー需要に直面している。
本稿では,nilmのマルチラベル分類を改良し,計算効率とエネルギー効率を向上した新しいdlモデルを提案する。
また,実世界のシナリオをよりよく表現するために,測定データセットから合成したデータを用いて異なるモデルを比較するテスト手法を提案する。
最先端のモデルと比較して、提案モデルでは炭素フットプリントを23%以上削減し、REFITとUK-DALEデータセットから得られたデータをテストする場合、平均8ポイントの性能向上を実現している。
関連論文リスト
- Evaluating the Energy Efficiency of Few-Shot Learning for Object
Detection in Industrial Settings [6.611985866622974]
本稿では、下流タスクに標準オブジェクト検出モデルを適用するための微調整手法を提案する。
開発モデルにおけるエネルギー需要のケーススタディと評価について述べる。
最後に、このトレードオフを、カスタマイズされた効率係数測定によって定量化する新しい方法を紹介する。
論文 参考訳(メタデータ) (2024-03-11T11:41:30Z) - Power Hungry Processing: Watts Driving the Cost of AI Deployment? [74.19749699665216]
生成された多目的AIシステムは、機械学習(ML)モデルをテクノロジに構築するための統一的なアプローチを約束する。
この「一般性」の野心は、これらのシステムが必要とするエネルギー量と放出する炭素量を考えると、環境に急激なコストがかかる。
これらのモデルを用いて,代表的なベンチマークデータセット上で1,000の推論を行うのに必要なエネルギーと炭素の量として,デプロイメントコストを測定した。
本稿は、多目的MLシステムの展開動向に関する議論から締めくくり、エネルギーと排出の面でコストの増大に対して、その実用性はより意図的に重み付けされるべきである、と警告する。
論文 参考訳(メタデータ) (2023-11-28T15:09:36Z) - Efficiency Pentathlon: A Standardized Arena for Efficiency Evaluation [82.85015548989223]
Pentathlonは、モデル効率の総合的で現実的な評価のためのベンチマークである。
Pentathlonは、モデルライフサイクルにおける計算の大部分を占める推論に焦点を当てている。
レイテンシ、スループット、メモリオーバーヘッド、エネルギー消費など、さまざまな効率面をターゲットにしたメトリクスが組み込まれている。
論文 参考訳(メタデータ) (2023-07-19T01:05:33Z) - A Meta-Learning Approach to Predicting Performance and Data Requirements [163.4412093478316]
本稿では,モデルが目標性能に達するために必要なサンプル数を推定する手法を提案する。
モデル性能を推定するデファクト原理であるパワー法則が,小さなデータセットを使用する場合の誤差が大きいことが判明した。
本稿では,2つのデータを異なる方法で処理するPPL法について紹介する。
論文 参考訳(メタデータ) (2023-03-02T21:48:22Z) - Data augmentation for learning predictive models on EEG: a systematic
comparison [79.84079335042456]
脳波(EEG)分類タスクの深層学習は、ここ数年急速に増加している。
EEG分類タスクのディープラーニングは、比較的小さなEEGデータセットによって制限されている。
データ拡張は、コンピュータビジョンや音声などのアプリケーションにまたがる最先端のパフォーマンスを得るために重要な要素となっている。
論文 参考訳(メタデータ) (2022-06-29T09:18:15Z) - Adversarial Energy Disaggregation for Non-intrusive Load Monitoring [78.47901044638525]
非侵入負荷モニタリング(Non-Inrusive Load Monitoring, NILM)としても知られるエネルギー分散は、家庭全体の電力消費を家電固有の個人消費に分けるという問題に挑戦する。
近年の進歩は、ディープニューラルネットワーク(DNN)がNILMに有利な性能を得られることを示している。
我々は、エネルギー分散タスクに新しくなったNILMに、敵対的学習の考え方を導入する。
論文 参考訳(メタデータ) (2021-08-02T03:56:35Z) - A Novel Hybrid Deep Learning Approach for Non-Intrusive Load Monitoring
of Residential Appliance Based on Long Short Term Memory and Convolutional
Neural Networks [0.0]
エネルギーの分解または非侵入負荷監視(NILM)は、単一入力ブラインド源の識別問題です。
本稿では、畳み込みニューラルネットワーク(CNN)を併用したLSTM(Deep Recurrent long term memory)ネットワークによる電力分散の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-04-15T22:34:20Z) - Energy Disaggregation using Variational Autoencoders [11.940343835617046]
非侵入負荷モニタリング(NILM)は、単一のセンサーを使用して建物の総電力消費量を測定する技術です。
最近の分散アルゴリズムは、NILMシステムの性能を大幅に改善した。
本稿では,変分オートエンコーダ(VAE)フレームワークに基づくエネルギー分散手法を提案する。
論文 参考訳(メタデータ) (2021-03-22T20:53:36Z) - A Comprehensive Review on the NILM Algorithms for Energy Disaggregation [0.0]
非侵入負荷モニタリング(NILM)またはエネルギー分散は、集合レベルで測定された家庭用エネルギーを構成機器に分離することを目的としている。
本稿では、効果的なNILMシステムフレームワークの調査を行い、ベンチマークアルゴリズムのパフォーマンスをレビューする。
論文 参考訳(メタデータ) (2021-02-20T23:53:57Z) - Incorporating Coincidental Water Data into Non-intrusive Load Monitoring [0.0]
独自の非オーバーラップ電力値を持つ家電の電力信号を抽出するイベントベースの分類プロセスを提案する。
ネットワーク内の新たなシグネチャとして,いくつかの機器の水消費を考慮した2つのディープラーニングモデルを用いて,重なり合う電力値を持つ家電を識別する。
提案プロセスでは, 電力の分散に加えて, 特定の電化製品の水消費プロファイルも抽出する。
論文 参考訳(メタデータ) (2021-01-18T17:49:39Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。