論文の概要: THOR: A Generic Energy Estimation Approach for On-Device Training
- arxiv url: http://arxiv.org/abs/2501.16397v1
- Date: Mon, 27 Jan 2025 03:29:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:41:06.377936
- Title: THOR: A Generic Energy Estimation Approach for On-Device Training
- Title(参考訳): thOR:オンデバイストレーニングのためのジェネリックエネルギー推定手法
- Authors: Jiaru Zhang, Zesong Wang, Hao Wang, Tao Song, Huai-an Su, Rui Chen, Yang Hua, Xiangwei Zhou, Ruhui Ma, Miao Pan, Haibing Guan,
- Abstract要約: THORは、ディープニューラルネットワーク(DNN)トレーニングにおけるエネルギー消費推定のための一般的なアプローチである。
我々は、様々な現実世界のプラットフォームにまたがる様々なタイプのモデルで広範な実験を行う。
その結果,THORは平均絶対パーセンテージ誤差(MAPE)を最大30%削減した。
- 参考スコア(独自算出の注目度): 34.57867978862375
- License:
- Abstract: Battery-powered mobile devices (e.g., smartphones, AR/VR glasses, and various IoT devices) are increasingly being used for AI training due to their growing computational power and easy access to valuable, diverse, and real-time data. On-device training is highly energy-intensive, making accurate energy consumption estimation crucial for effective job scheduling and sustainable AI. However, the heterogeneity of devices and the complexity of models challenge the accuracy and generalizability of existing estimation methods. This paper proposes THOR, a generic approach for energy consumption estimation in deep neural network (DNN) training. First, we examine the layer-wise energy additivity property of DNNs and strategically partition the entire model into layers for fine-grained energy consumption profiling. Then, we fit Gaussian Process (GP) models to learn from layer-wise energy consumption measurements and estimate a DNN's overall energy consumption based on its layer-wise energy additivity property. We conduct extensive experiments with various types of models across different real-world platforms. The results demonstrate that THOR has effectively reduced the Mean Absolute Percentage Error (MAPE) by up to 30%. Moreover, THOR is applied in guiding energy-aware pruning, successfully reducing energy consumption by 50%, thereby further demonstrating its generality and potential.
- Abstract(参考訳): バッテリー駆動のモバイルデバイス(スマートフォン、AR/VRメガネ、各種IoTデバイスなど)は、計算能力の増大と、価値ある多様なリアルタイムデータへのアクセスが容易なため、AIトレーニングにますます利用されている。
デバイス上でのトレーニングは非常にエネルギー集約的であり、効率的なジョブスケジューリングと持続可能なAIのために正確なエネルギー消費の推定が重要である。
しかし、デバイスの不均一性とモデルの複雑さは、既存の推定手法の精度と一般化性に挑戦する。
本稿では,ディープニューラルネットワーク(DNN)トレーニングにおけるエネルギー消費推定法であるTHORを提案する。
まず,DNNの層状エネルギー付加性について検討し,そのモデル全体を詳細なエネルギー消費プロファイリングのための層に戦略的に分割する。
次に,Gaussian Process (GP) モデルを用いて,層次エネルギー消費の測定から学習し,その層次エネルギー添加性に基づいてDNNの全体エネルギー消費を推定する。
我々は、様々な現実世界のプラットフォームにまたがる様々なタイプのモデルで広範な実験を行う。
その結果,THORは平均絶対パーセンテージ誤差(MAPE)を最大30%削減した。
さらに、THORは、エネルギー対応プルーニングの誘導に適用され、エネルギー消費を50%削減し、その一般化とポテンシャルをさらに実証する。
関連論文リスト
- Unveiling Energy Efficiency in Deep Learning: Measurement, Prediction, and Scoring across Edge Devices [8.140572894424208]
我々はエネルギー測定、予測、効率評価を含む3倍の研究を行う。
まず、デバイス上での深層学習のエネルギー消費特性を明らかにするための、第1級の詳細な測定結果を示す。
第2に、カーネルレベルのエネルギーデータセットに基づいて、エッジデバイスのための最初のカーネルレベルのエネルギー予測器を設計、実装する。
論文 参考訳(メタデータ) (2023-10-19T23:55:00Z) - Energy Efficient Deep Multi-Label ON/OFF Classification of Low Frequency Metered Home Appliances [0.16777183511743468]
非侵入負荷監視(Non-Inrusive Load Monitoring、NILM)は、単一計測点からアプライアンスレベルのデータを取得するプロセスである。
本稿では,NILMのマルチラベル分類を改良した新しいDLモデルを提案する。
最先端モデルと比較して、提案モデルではエネルギー消費を23%以上削減している。
論文 参考訳(メタデータ) (2023-07-18T13:23:23Z) - Sustainable Edge Intelligence Through Energy-Aware Early Exiting [0.726437825413781]
EHエッジインテリジェンスシステムにおいて,エネルギー適応型動的早期退避を提案する。
提案手法は, サンプルごとの最適計算量を決定する, エネルギー対応のEEポリシーを導出する。
その結果, エネルギーに依存しない政策と比較して, 精度は25%, サービスレートは35%向上した。
論文 参考訳(メタデータ) (2023-05-23T14:17:44Z) - EPAM: A Predictive Energy Model for Mobile AI [6.451060076703027]
本稿では,異なるディープニューラルネットワーク(DNN)モデルと処理源を考慮したモバイルAIアプリケーションに関する総合的研究を紹介する。
4つの処理源を用いて,全モデルのレイテンシ,エネルギー消費,メモリ使用量を測定した。
私たちの研究は、CPU、GPU、NNAPIを使用して、異なるアプリケーション(ビジョンとノンビジョン)でモバイルAIがどのように振る舞うか、といった重要な洞察を強調しています。
論文 参考訳(メタデータ) (2023-03-02T09:11:23Z) - Precise Energy Consumption Measurements of Heterogeneous Artificial
Intelligence Workloads [0.534434568021034]
本稿では,異なるタイプの計算ノード上でのディープラーニングモデルの典型的な2つの応用のエネルギー消費の測定を行う。
我々のアプローチの1つの利点は、スーパーコンピュータの全ユーザーがエネルギー消費に関する情報を利用できることである。
論文 参考訳(メタデータ) (2022-12-03T21:40:55Z) - Adversarial Energy Disaggregation for Non-intrusive Load Monitoring [78.47901044638525]
非侵入負荷モニタリング(Non-Inrusive Load Monitoring, NILM)としても知られるエネルギー分散は、家庭全体の電力消費を家電固有の個人消費に分けるという問題に挑戦する。
近年の進歩は、ディープニューラルネットワーク(DNN)がNILMに有利な性能を得られることを示している。
我々は、エネルギー分散タスクに新しくなったNILMに、敵対的学習の考え方を導入する。
論文 参考訳(メタデータ) (2021-08-02T03:56:35Z) - Energy-Efficient and Federated Meta-Learning via Projected Stochastic
Gradient Ascent [79.58680275615752]
エネルギー効率のよいメタラーニングフレームワークを提案する。
各タスクは別々のエージェントによって所有されていると仮定するため、メタモデルをトレーニングするために限られたタスクが使用される。
論文 参考訳(メタデータ) (2021-05-31T08:15:44Z) - Energy Drain of the Object Detection Processing Pipeline for Mobile
Devices: Analysis and Implications [77.00418462388525]
本稿では、移動体拡張現実(AR)クライアントのエネルギー消費と、畳み込みニューラルネットワーク(CNN)に基づく物体検出を行う際の検出遅延について、初めて詳細な実験を行った。
我々は,移動体ARクライアントのエネルギー分析を精査し,CNNによる物体検出を行う際のエネルギー消費に関するいくつかの興味深い視点を明らかにした。
論文 参考訳(メタデータ) (2020-11-26T00:32:07Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。