論文の概要: Energy Efficient Deep Multi-Label ON/OFF Classification of Low Frequency Metered Home Appliances
- arxiv url: http://arxiv.org/abs/2307.09244v2
- Date: Fri, 29 Mar 2024 15:54:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 20:46:32.744540
- Title: Energy Efficient Deep Multi-Label ON/OFF Classification of Low Frequency Metered Home Appliances
- Title(参考訳): 低周波計測家電機器のエネルギー効率の深いマルチラベルオン/オフ分類
- Authors: Anže Pirnat, Blaž Bertalanič, Gregor Cerar, Mihael Mohorčič, Carolina Fortuna,
- Abstract要約: 非侵入負荷監視(Non-Inrusive Load Monitoring、NILM)は、単一計測点からアプライアンスレベルのデータを取得するプロセスである。
本稿では,NILMのマルチラベル分類を改良した新しいDLモデルを提案する。
最先端モデルと比較して、提案モデルではエネルギー消費を23%以上削減している。
- 参考スコア(独自算出の注目度): 0.16777183511743468
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-intrusive load monitoring (NILM) is the process of obtaining appliance-level data from a single metering point, measuring total electricity consumption of a household or a business. Appliance-level data can be directly used for demand response applications and energy management systems as well as for awareness raising and motivation for improvements in energy efficiency. Recently, classical machine learning and deep learning (DL) techniques became very popular and proved as highly effective for NILM classification, but with the growing complexity these methods are faced with significant computational and energy demands during both their training and operation. In this paper, we introduce a novel DL model aimed at enhanced multi-label classification of NILM with improved computation and energy efficiency. We also propose an evaluation methodology for comparison of different models using data synthesized from the measurement datasets so as to better represent real-world scenarios. Compared to the state-of-the-art, the proposed model has its energy consumption reduced by more than 23% while providing on average approximately 8 percentage points in performance improvement when evaluating on data derived from REFIT and UK-DALE datasets. We also show a 12 percentage point performance advantage of the proposed DL based model over a random forest model and observe performance degradation with the increase of the number of devices in the household, namely with each additional 5 devices, the average performance degrades by approximately 7 percentage points.
- Abstract(参考訳): 非侵入負荷モニタリング(Non-Inrusive Load Monitoring, NILM)とは、家庭や事業の総消費電力を計測し、単一の計測点からアプライアンスレベルのデータを取得するプロセスである。
アプライアンスレベルのデータは、需要対応アプリケーションやエネルギー管理システム、およびエネルギー効率の改善のための意識向上とモチベーションのために直接使用できる。
近年、古典的な機械学習とディープラーニング(DL)技術は非常に普及し、NILM分類に非常に効果的であることが証明されているが、複雑さが増すにつれ、これらの手法は訓練と運用の両方において、かなりの計算とエネルギーの要求に直面している。
本稿では,NILMのマルチラベル分類を改良した新しいDLモデルを提案する。
また、実世界のシナリオをよりよく表現するために、測定データセットから合成したデータを用いて異なるモデルを比較するための評価手法を提案する。
現状と比較して,提案モデルでは,REFITデータセットとUK-DALEデータセットから得られたデータに基づいて,平均8ポイントの性能向上を図りながら,エネルギー消費量を23%以上削減した。
また,無作為林モデルに対して提案したDLモデルによる12ポイント性能の利点を示すとともに,家庭内のデバイス数の増加に伴う性能劣化,すなわち,追加5デバイス毎に平均性能が約7ポイント低下することを示す。
関連論文リスト
- Evaluating the Energy Efficiency of Few-Shot Learning for Object
Detection in Industrial Settings [6.611985866622974]
本稿では、下流タスクに標準オブジェクト検出モデルを適用するための微調整手法を提案する。
開発モデルにおけるエネルギー需要のケーススタディと評価について述べる。
最後に、このトレードオフを、カスタマイズされた効率係数測定によって定量化する新しい方法を紹介する。
論文 参考訳(メタデータ) (2024-03-11T11:41:30Z) - Power Hungry Processing: Watts Driving the Cost of AI Deployment? [74.19749699665216]
生成された多目的AIシステムは、機械学習(ML)モデルをテクノロジに構築するための統一的なアプローチを約束する。
この「一般性」の野心は、これらのシステムが必要とするエネルギー量と放出する炭素量を考えると、環境に急激なコストがかかる。
これらのモデルを用いて,代表的なベンチマークデータセット上で1,000の推論を行うのに必要なエネルギーと炭素の量として,デプロイメントコストを測定した。
本稿は、多目的MLシステムの展開動向に関する議論から締めくくり、エネルギーと排出の面でコストの増大に対して、その実用性はより意図的に重み付けされるべきである、と警告する。
論文 参考訳(メタデータ) (2023-11-28T15:09:36Z) - Efficiency Pentathlon: A Standardized Arena for Efficiency Evaluation [82.85015548989223]
Pentathlonは、モデル効率の総合的で現実的な評価のためのベンチマークである。
Pentathlonは、モデルライフサイクルにおける計算の大部分を占める推論に焦点を当てている。
レイテンシ、スループット、メモリオーバーヘッド、エネルギー消費など、さまざまな効率面をターゲットにしたメトリクスが組み込まれている。
論文 参考訳(メタデータ) (2023-07-19T01:05:33Z) - A Meta-Learning Approach to Predicting Performance and Data Requirements [163.4412093478316]
本稿では,モデルが目標性能に達するために必要なサンプル数を推定する手法を提案する。
モデル性能を推定するデファクト原理であるパワー法則が,小さなデータセットを使用する場合の誤差が大きいことが判明した。
本稿では,2つのデータを異なる方法で処理するPPL法について紹介する。
論文 参考訳(メタデータ) (2023-03-02T21:48:22Z) - Data augmentation for learning predictive models on EEG: a systematic
comparison [79.84079335042456]
脳波(EEG)分類タスクの深層学習は、ここ数年急速に増加している。
EEG分類タスクのディープラーニングは、比較的小さなEEGデータセットによって制限されている。
データ拡張は、コンピュータビジョンや音声などのアプリケーションにまたがる最先端のパフォーマンスを得るために重要な要素となっている。
論文 参考訳(メタデータ) (2022-06-29T09:18:15Z) - Adversarial Energy Disaggregation for Non-intrusive Load Monitoring [78.47901044638525]
非侵入負荷モニタリング(Non-Inrusive Load Monitoring, NILM)としても知られるエネルギー分散は、家庭全体の電力消費を家電固有の個人消費に分けるという問題に挑戦する。
近年の進歩は、ディープニューラルネットワーク(DNN)がNILMに有利な性能を得られることを示している。
我々は、エネルギー分散タスクに新しくなったNILMに、敵対的学習の考え方を導入する。
論文 参考訳(メタデータ) (2021-08-02T03:56:35Z) - A Novel Hybrid Deep Learning Approach for Non-Intrusive Load Monitoring
of Residential Appliance Based on Long Short Term Memory and Convolutional
Neural Networks [0.0]
エネルギーの分解または非侵入負荷監視(NILM)は、単一入力ブラインド源の識別問題です。
本稿では、畳み込みニューラルネットワーク(CNN)を併用したLSTM(Deep Recurrent long term memory)ネットワークによる電力分散の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-04-15T22:34:20Z) - Energy Disaggregation using Variational Autoencoders [11.940343835617046]
非侵入負荷モニタリング(NILM)は、単一のセンサーを使用して建物の総電力消費量を測定する技術です。
最近の分散アルゴリズムは、NILMシステムの性能を大幅に改善した。
本稿では,変分オートエンコーダ(VAE)フレームワークに基づくエネルギー分散手法を提案する。
論文 参考訳(メタデータ) (2021-03-22T20:53:36Z) - A Comprehensive Review on the NILM Algorithms for Energy Disaggregation [0.0]
非侵入負荷モニタリング(NILM)またはエネルギー分散は、集合レベルで測定された家庭用エネルギーを構成機器に分離することを目的としている。
本稿では、効果的なNILMシステムフレームワークの調査を行い、ベンチマークアルゴリズムのパフォーマンスをレビューする。
論文 参考訳(メタデータ) (2021-02-20T23:53:57Z) - Incorporating Coincidental Water Data into Non-intrusive Load Monitoring [0.0]
独自の非オーバーラップ電力値を持つ家電の電力信号を抽出するイベントベースの分類プロセスを提案する。
ネットワーク内の新たなシグネチャとして,いくつかの機器の水消費を考慮した2つのディープラーニングモデルを用いて,重なり合う電力値を持つ家電を識別する。
提案プロセスでは, 電力の分散に加えて, 特定の電化製品の水消費プロファイルも抽出する。
論文 参考訳(メタデータ) (2021-01-18T17:49:39Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。