論文の概要: Selective Generation for Controllable Language Models
- arxiv url: http://arxiv.org/abs/2307.09254v2
- Date: Fri, 08 Nov 2024 06:47:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:53:10.370447
- Title: Selective Generation for Controllable Language Models
- Title(参考訳): 制御可能な言語モデルのための選択生成
- Authors: Minjae Lee, Kyungmin Kim, Taesoo Kim, Sangdon Park,
- Abstract要約: 生成言語モデル(GLM)の信頼性は、重要な意思決定システムへの展開において不可欠である。
テキストエンタテインメント関係(FDR-E)に関して、偽発見率を制御する2つの選択的生成アルゴリズムを提案する。
選択予測を直接修正した$textttSGentextttSup$は、人間によって注釈付けされたエンテーメントラベル付きデータを悪用する。
人間のアノテーションはコストがかかるので、unを完全に活用した半教師付きバージョンである$textttSGentexttSemi$を提案します。
- 参考スコア(独自算出の注目度): 19.909671258499184
- License:
- Abstract: Trustworthiness of generative language models (GLMs) is crucial in their deployment to critical decision making systems. Hence, certified risk control methods such as selective prediction and conformal prediction have been applied to mitigating the hallucination problem in various supervised downstream tasks. However, the lack of appropriate correctness metric hinders applying such principled methods to language generation tasks. In this paper, we circumvent this problem by leveraging the concept of textual entailment to evaluate the correctness of the generated sequence, and propose two selective generation algorithms which control the false discovery rate with respect to the textual entailment relation (FDR-E) with a theoretical guarantee: $\texttt{SGen}^{\texttt{Sup}}$ and $\texttt{SGen}^{\texttt{Semi}}$. $\texttt{SGen}^{\texttt{Sup}}$, a direct modification of the selective prediction, is a supervised learning algorithm which exploits entailment-labeled data, annotated by humans. Since human annotation is costly, we further propose a semi-supervised version, $\texttt{SGen}^{\texttt{Semi}}$, which fully utilizes the unlabeled data by pseudo-labeling, leveraging an entailment set function learned via conformal prediction. Furthermore, $\texttt{SGen}^{\texttt{Semi}}$ enables to use more general class of selection functions, neuro-selection functions, and provides users with an optimal selection function class given multiple candidates. Finally, we demonstrate the efficacy of the $\texttt{SGen}$ family in achieving a desired FDR-E level with comparable selection efficiency to those from baselines on both open and closed source GLMs. Code and datasets are provided at https://github.com/ml-postech/selective-generation.
- Abstract(参考訳): 生成言語モデル(GLM)の信頼性は、重要な意思決定システムへの展開において不可欠である。
そのため、各種下流タスクにおける幻覚の緩和に、選択予測や共形予測などの認定リスク制御手法が適用されている。
しかし、適切な正当性尺度の欠如は、そのような原則的手法を言語生成タスクに適用することを妨げている。
本稿では,テキストエンタテインメントの概念を活用して生成シーケンスの正確性を評価することによってこの問題を回避するとともに,テキストエンタテインメント関係(FDR-E)に関する偽発見率を理論的保証付きで制御する2つの選択生成アルゴリズムを提案する。
選択予測を直接修正した$\texttt{SGen}^{\textt{Sup}}$は、人間によって注釈付けされたエンテーメントラベル付きデータを利用する教師付き学習アルゴリズムである。
人間のアノテーションはコストがかかるので、さらに半教師付きバージョンである$\texttt{SGen}^{\textt{Semi}}$を提案します。
さらに$\texttt{SGen}^{\textt{Semi}}$は、より一般的な選択関数、ニューロ選択関数のクラスの使用を可能にし、複数の候補が与えられた最適な選択関数クラスを提供する。
最後に、$\texttt{SGen}$ family の FDR-E レベルを、オープンおよびクローズドソース GLM のベースラインから選択効率に匹敵する、所望の FDR-E レベルを達成する上での有効性を実証する。
コードとデータセットはhttps://github.com/ml-postech/elective-generationで提供されている。
関連論文リスト
- Co-training for Low Resource Scientific Natural Language Inference [65.37685198688538]
遠隔教師付きラベルに分類器のトレーニング力学に基づいて重みを割り当てる新しいコトレーニング手法を提案する。
予測された信頼度に対する任意のしきい値に基づいてサンプルをフィルタリングするのではなく、重要重みを割り当てることにより、自動ラベル付きデータの使用を最大化する。
提案手法は、遠隔監視ベースラインに対するマクロF1の1.5%の改善と、他の強力なSSLベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-06-20T18:35:47Z) - RegaVAE: A Retrieval-Augmented Gaussian Mixture Variational Auto-Encoder
for Language Modeling [79.56442336234221]
可変オートエンコーダ(VAE)に基づく検索拡張言語モデルであるRegaVAEを紹介する。
テキストコーパスを潜在空間にエンコードし、ソースとターゲットの両方のテキストから現在と将来の情報をキャプチャする。
各種データセットに対する実験結果から,テキスト生成品質と幻覚除去の大幅な改善が示された。
論文 参考訳(メタデータ) (2023-10-16T16:42:01Z) - Controlling Federated Learning for Covertness [15.878313629774269]
学習者は、ノイズの多い勾配評価を提供する分散オラクルを何度もクエリすることで、関数の$f$を最小化することを目指している。
同時に、学習者は、学習者のクエリを監視する悪意のある盗聴者から$argmin f$を隠そうとする。
本稿では,学習者が学習と難読化のどちらを動的に選択するかという,textitcovert や textitlearner-private 最適化の問題について考察する。
論文 参考訳(メタデータ) (2023-08-17T07:16:41Z) - An Invariant Learning Characterization of Controlled Text Generation [25.033675230270212]
制御生成(英語: Controlled generation)とは、興味のある文体や意味的な属性を含むテキストを作成する問題である。
ユーザプロンプトに応答するテキストの分布が、予測器がトレーニングした分布と異なる場合、制御された生成の性能は低下する可能性があることを示す。
論文 参考訳(メタデータ) (2023-05-31T21:35:08Z) - M-Tuning: Prompt Tuning with Mitigated Label Bias in Open-Set Scenarios [103.6153593636399]
緩和ラベルバイアス(M-Tuning)を用いた視覚言語プロンプトチューニング手法を提案する。
これはWordNetからのオープンワードを導入し、クローズドセットラベルワードのみからもっと多くのプロンプトテキストを形成する単語の範囲を広げ、シミュレートされたオープンセットシナリオでプロンプトをチューニングする。
提案手法は,様々なスケールのデータセット上で最高の性能を達成し,広範囲にわたるアブレーション研究もその有効性を検証した。
論文 参考訳(メタデータ) (2023-03-09T09:05:47Z) - Classifiers are Better Experts for Controllable Text Generation [63.17266060165098]
提案手法は, PPLにおける最近のPPLM, GeDi, DExpertsよりも有意に優れており, 生成したテキストの外部分類器に基づく感情の精度が高いことを示す。
同時に、実装やチューニングも簡単で、制限や要件も大幅に少なくなります。
論文 参考訳(メタデータ) (2022-05-15T12:58:35Z) - AGGGEN: Ordering and Aggregating while Generating [12.845842212733695]
本稿では,2つの明示的な文計画段階をニューラルデータ・トゥ・テキストシステムに再導入するデータ・ツー・テキスト・モデルAGGGENを提案する。
AGGGENは、入力表現とターゲットテキスト間の遅延アライメントを学習してテキストを生成すると同時に、文計画を実行する。
論文 参考訳(メタデータ) (2021-06-10T08:14:59Z) - Conditioned Text Generation with Transfer for Closed-Domain Dialogue
Systems [65.48663492703557]
条件付き変分オートエンコーダを用いて,意図特化文の生成を最適に学習し,制御する方法を示す。
クエリ転送と呼ばれる新しいプロトコルを導入し、大規模で遅延のないデータセットを活用できるようにします。
論文 参考訳(メタデータ) (2020-11-03T14:06:10Z) - Improving Text Generation with Student-Forcing Optimal Transport [122.11881937642401]
トレーニングモードとテストモードで生成されたシーケンスに最適なトランスポート(OT)を提案する。
テキストシーケンスの構造的および文脈的情報に基づいて、OT学習を改善するための拡張も提案されている。
提案手法の有効性は,機械翻訳,テキスト要約,テキスト生成タスクにおいて検証される。
論文 参考訳(メタデータ) (2020-10-12T19:42:25Z) - Rationalizing Text Matching: Learning Sparse Alignments via Optimal
Transport [14.86310501896212]
本研究では,この選択的合理化アプローチをテキストマッチングに拡張する。
目標は、下流の予測の正当化として、トークンや文などのテキストを共同で選択し、調整することである。
我々のアプローチでは、入力間の最小コストアライメントを見つけるために最適なトランスポート(OT)を採用している。
論文 参考訳(メタデータ) (2020-05-27T01:20:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。