Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural
Wavefunctions
- URL: http://arxiv.org/abs/2307.09337v1
- Date: Sat, 15 Jul 2023 09:56:22 GMT
- Title: Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural
Wavefunctions
- Authors: Michael Scherbela, Leon Gerard, Philipp Grohs
- Abstract summary: Deep-learning-based Variational Monte Carlo (DL-VMC) has recently outperformed conventional approaches in terms of accuracy, but only at large computational cost.
We propose a DL-VMC model which has been pre-trained using self-supervised wavefunction optimization on a large and chemically diverse set of molecules.
Applying this model to new molecules without any optimization, yields wavefunctions and absolute energies that outperform established methods such as CCSD(T)-2Z.
- Score: 5.145741425164946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Obtaining accurate solutions to the Schr\"odinger equation is the key
challenge in computational quantum chemistry. Deep-learning-based Variational
Monte Carlo (DL-VMC) has recently outperformed conventional approaches in terms
of accuracy, but only at large computational cost. Whereas in many domains
models are trained once and subsequently applied for inference, accurate DL-VMC
so far requires a full optimization for every new problem instance, consuming
thousands of GPUhs even for small molecules. We instead propose a DL-VMC model
which has been pre-trained using self-supervised wavefunction optimization on a
large and chemically diverse set of molecules. Applying this model to new
molecules without any optimization, yields wavefunctions and absolute energies
that outperform established methods such as CCSD(T)-2Z. To obtain accurate
relative energies, only few fine-tuning steps of this base model are required.
We accomplish this with a fully end-to-end machine-learned model, consisting of
an improved geometry embedding architecture and an existing SE(3)-equivariant
model to represent molecular orbitals. Combining this architecture with
continuous sampling of geometries, we improve zero-shot accuracy by two orders
of magnitude compared to the state of the art. We extensively evaluate the
accuracy, scalability and limitations of our base model on a wide variety of
test systems.
Related papers
- EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates
for Molecular Dynamics [8.35780131268962]
We present Implict Transfer Operator (ITO) Learning, a framework to learn surrogates of the simulation process with multiple time-resolutions.
We also present a coarse-grained CG-SE3-ITO model which can quantitatively model all-atom molecular dynamics.
arXiv Detail & Related papers (2023-05-29T12:19:41Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - A data-driven peridynamic continuum model for upscaling molecular
dynamics [3.1196544696082613]
We propose a learning framework to extract, from molecular dynamics data, an optimal Linear Peridynamic Solid model.
We provide sufficient well-posedness conditions for discretized LPS models with sign-changing influence functions.
This framework guarantees that the resulting model is mathematically well-posed, physically consistent, and that it generalizes well to settings that are different from the ones used during training.
arXiv Detail & Related papers (2021-08-04T07:07:47Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z) - Solving the electronic Schr\"odinger equation for multiple nuclear
geometries with weight-sharing deep neural networks [4.1201966507589995]
We introduce a weight-sharing constraint when optimizing neural network-based models for different molecular geometries.
We find that this technique can accelerate optimization when considering sets of nuclear geometries of the same molecule by an order of magnitude.
arXiv Detail & Related papers (2021-05-18T08:23:09Z) - Fast and Robust Cascade Model for Multiple Degradation Single Image
Super-Resolution [2.1574781022415364]
Single Image Super-Resolution (SISR) is one of the low-level computer vision problems that has received increased attention in the last few years.
Here, we propose a new formulation of the Convolutional Neural Network (CNN) cascade model.
A new densely connected CNN-architecture is proposed where the output of each sub- module is restricted using some external knowledge.
arXiv Detail & Related papers (2020-11-16T18:59:49Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Certified variational quantum algorithms for eigenstate preparation [0.0]
We develop a means to certify the termination of variational algorithms.
We demonstrate our approach by applying it to three models: the transverse field Ising model, the model of one-dimensional spinless fermions with competing interactions, and the Schwinger model of quantum electrodynamics.
arXiv Detail & Related papers (2020-06-23T18:00:00Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
We adapt an algorithm of Klivans and Meka based on the method of multiplicative weight updates.
The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature.
It has a low runtime $O(mp2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
arXiv Detail & Related papers (2020-02-20T10:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.