Prompting Forgetting: Unlearning in GANs via Textual Guidance
- URL: http://arxiv.org/abs/2504.01218v1
- Date: Tue, 01 Apr 2025 22:18:40 GMT
- Title: Prompting Forgetting: Unlearning in GANs via Textual Guidance
- Authors: Piyush Nagasubramaniam, Neeraj Karamchandani, Chen Wu, Sencun Zhu,
- Abstract summary: We propose Text-to-Unlearn, a novel framework that selectively unlearns concepts from pre-trained GANs using only text prompts.<n>Our approach guides the unlearning process without requiring additional datasets or supervised fine-tuning.<n>To our knowledge, Text-to-Unlearn is the first cross-modal unlearning framework for GANs.
- Score: 4.3562145620596215
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: State-of-the-art generative models exhibit powerful image-generation capabilities, introducing various ethical and legal challenges to service providers hosting these models. Consequently, Content Removal Techniques (CRTs) have emerged as a growing area of research to control outputs without full-scale retraining. Recent work has explored the use of Machine Unlearning in generative models to address content removal. However, the focus of such research has been on diffusion models, and unlearning in Generative Adversarial Networks (GANs) has remained largely unexplored. We address this gap by proposing Text-to-Unlearn, a novel framework that selectively unlearns concepts from pre-trained GANs using only text prompts, enabling feature unlearning, identity unlearning, and fine-grained tasks like expression and multi-attribute removal in models trained on human faces. Leveraging natural language descriptions, our approach guides the unlearning process without requiring additional datasets or supervised fine-tuning, offering a scalable and efficient solution. To evaluate its effectiveness, we introduce an automatic unlearning assessment method adapted from state-of-the-art image-text alignment metrics, providing a comprehensive analysis of the unlearning methodology. To our knowledge, Text-to-Unlearn is the first cross-modal unlearning framework for GANs, representing a flexible and efficient advancement in managing generative model behavior.
Related papers
- Active Learning Inspired ControlNet Guidance for Augmenting Semantic Segmentation Datasets [15.786823017952122]
ControlNet enables precise alignment between ground truth segmentation masks and the generated image content.
We propose the first approach to integrate active learning-based selection metrics into the backward diffusion process.
We show that segmentation models trained with guided synthetic data outperform those trained on non-guided synthetic data.
arXiv Detail & Related papers (2025-03-12T10:09:27Z) - Disentangled World Models: Learning to Transfer Semantic Knowledge from Distracting Videos for Reinforcement Learning [93.58897637077001]
This paper tries to learn and understand underlying semantic variations from distracting videos via offline-to-online latent distillation and flexible disentanglement constraints.<n>We pretrain the action-free video prediction model offline with disentanglement regularization to extract semantic knowledge from distracting videos.<n>For finetuning in the online environment, we exploit the knowledge from the pretrained model and introduce a disentanglement constraint to the world model.
arXiv Detail & Related papers (2025-03-11T13:50:22Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [52.03511469562013]
We introduce the Iterative Contrastive Unlearning (ICU) framework, which consists of three core components.<n>A Knowledge Unlearning Induction module targets specific knowledge for removal using an unlearning loss.<n>A Contrastive Learning Enhancement module preserves the model's expressive capabilities against the pure unlearning goal.<n>An Iterative Unlearning Refinement module dynamically adjusts the unlearning process through ongoing evaluation and updates.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
This paper seeks to refine the evaluation of machine unlearning for large language models.<n>It addresses two key challenges -- the robustness of evaluation metrics and the trade-offs between competing goals.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Enhancing Large Vision Language Models with Self-Training on Image Comprehension [131.14381425260706]
We introduce Self-Training on Image (STIC), which emphasizes a self-training approach specifically for image comprehension.
First, the model self-constructs a preference for image descriptions using unlabeled images.
To further self-improve reasoning on the extracted visual information, we let the model reuse a small portion of existing instruction-tuning data.
arXiv Detail & Related papers (2024-05-30T05:53:49Z) - Pre-trained Text-to-Image Diffusion Models Are Versatile Representation Learners for Control [73.6361029556484]
Embodied AI agents require a fine-grained understanding of the physical world mediated through visual and language inputs.
We consider pre-trained text-to-image diffusion models, which are explicitly optimized to generate images from text prompts.
We show that Stable Control Representations enable learning policies that exhibit state-of-the-art performance on OVMM, a difficult open-vocabulary navigation benchmark.
arXiv Detail & Related papers (2024-05-09T15:39:54Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Towards A Unified Agent with Foundation Models [18.558328028366816]
We investigate how to embed and leverage such abilities in Reinforcement Learning (RL) agents.
We design a framework that uses language as the core reasoning tool, exploring how this enables an agent to tackle a series of fundamental RL challenges.
We demonstrate substantial performance improvements over baselines in exploration efficiency and ability to reuse data from offline datasets.
arXiv Detail & Related papers (2023-07-18T22:37:30Z) - Meta-Learning via Classifier(-free) Guidance [5.812784742024491]
State-of-the-art meta-learning techniques do not optimize for zero-shot adaptation to unseen tasks.
We propose meta-learning techniques that use natural language guidance to achieve higher zero-shot performance.
arXiv Detail & Related papers (2022-10-17T11:09:35Z) - Text Generation by Learning from Demonstrations [17.549815256968877]
Current approaches to text generation largely rely on autoregressive models and maximum likelihood estimation.
We propose GOLD: an easy-to-optimize algorithm that learns from expert demonstrations by importance weighting.
According to both automatic and human evaluation, models trained by GOLD outperform those trained by MLE and policy gradient.
arXiv Detail & Related papers (2020-09-16T17:58:37Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
We introduce a learning algorithm which directly optimize model's ability to learn text representations for effective learning of downstream tasks.
We show that there is an intrinsic connection between multi-task pre-training and model-agnostic meta-learning with a sequence of meta-train steps.
arXiv Detail & Related papers (2020-04-12T09:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.