Model Adaptation: Unsupervised Domain Adaptation without Source Data
- URL: http://arxiv.org/abs/2502.19316v1
- Date: Wed, 26 Feb 2025 17:10:52 GMT
- Title: Model Adaptation: Unsupervised Domain Adaptation without Source Data
- Authors: Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, Si Wu,
- Abstract summary: We investigate a challenging unsupervised domain adaptation setting -- unsupervised model adaptation.<n>We propose a new framework, which is referred to as collaborative class conditional generative adversarial net.<n>Our model achieves superior performance on multiple adaptation tasks with only unlabeled target data.
- Score: 18.432169569171933
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we investigate a challenging unsupervised domain adaptation setting -- unsupervised model adaptation. We aim to explore how to rely only on unlabeled target data to improve performance of an existing source prediction model on the target domain, since labeled source data may not be available in some real-world scenarios due to data privacy issues. For this purpose, we propose a new framework, which is referred to as collaborative class conditional generative adversarial net to bypass the dependence on the source data. Specifically, the prediction model is to be improved through generated target-style data, which provides more accurate guidance for the generator. As a result, the generator and the prediction model can collaborate with each other without source data. Furthermore, due to the lack of supervision from source data, we propose a weight constraint that encourages similarity to the source model. A clustering-based regularization is also introduced to produce more discriminative features in the target domain. Compared to conventional domain adaptation methods, our model achieves superior performance on multiple adaptation tasks with only unlabeled target data, which verifies its effectiveness in this challenging setting.
Related papers
- Unsupervised Accuracy Estimation of Deep Visual Models using
Domain-Adaptive Adversarial Perturbation without Source Samples [1.1852406625172216]
We propose a new framework to estimate model accuracy on unlabeled target data without access to source data.
Our approach measures the disagreement rate between the source hypothesis and the target pseudo-labeling function.
Our proposed source-free framework effectively addresses the challenging distribution shift scenarios and outperforms existing methods requiring source data and labels for training.
arXiv Detail & Related papers (2023-07-19T15:33:11Z) - Continual Source-Free Unsupervised Domain Adaptation [37.060694803551534]
Existing Source-free Unsupervised Domain Adaptation approaches exhibit catastrophic forgetting.
We propose a Continual SUDA (C-SUDA) framework to cope with the challenge of SUDA in a continual learning setting.
arXiv Detail & Related papers (2023-04-14T20:11:05Z) - Variational Model Perturbation for Source-Free Domain Adaptation [64.98560348412518]
We introduce perturbations into the model parameters by variational Bayesian inference in a probabilistic framework.
We demonstrate the theoretical connection to learning Bayesian neural networks, which proves the generalizability of the perturbed model to target domains.
arXiv Detail & Related papers (2022-10-19T08:41:19Z) - RAIN: RegulArization on Input and Network for Black-Box Domain
Adaptation [80.03883315743715]
Source-free domain adaptation transits the source-trained model towards target domain without exposing the source data.
This paradigm is still at risk of data leakage due to adversarial attacks on the source model.
We propose a novel approach named RAIN (RegulArization on Input and Network) for Black-Box domain adaptation from both input-level and network-level regularization.
arXiv Detail & Related papers (2022-08-22T18:18:47Z) - Uncertainty-guided Source-free Domain Adaptation [77.3844160723014]
Source-free domain adaptation (SFDA) aims to adapt a classifier to an unlabelled target data set by only using a pre-trained source model.
We propose quantifying the uncertainty in the source model predictions and utilizing it to guide the target adaptation.
arXiv Detail & Related papers (2022-08-16T08:03:30Z) - Unsupervised Adaptation of Semantic Segmentation Models without Source
Data [14.66682099621276]
We consider the novel problem of unsupervised domain adaptation of source models, without access to the source data for semantic segmentation.
We propose a self-training approach to extract the knowledge from the source model.
Our framework is able to achieve significant performance gains compared to directly applying the source model on the target data.
arXiv Detail & Related papers (2021-12-04T15:13:41Z) - Source-Free Domain Adaptive Fundus Image Segmentation with Denoised
Pseudo-Labeling [56.98020855107174]
Domain adaptation typically requires to access source domain data to utilize their distribution information for domain alignment with the target data.
In many real-world scenarios, the source data may not be accessible during the model adaptation in the target domain due to privacy issue.
We present a novel denoised pseudo-labeling method for this problem, which effectively makes use of the source model and unlabeled target data.
arXiv Detail & Related papers (2021-09-19T06:38:21Z) - Unsupervised Multi-source Domain Adaptation Without Access to Source
Data [58.551861130011886]
Unsupervised Domain Adaptation (UDA) aims to learn a predictor model for an unlabeled domain by transferring knowledge from a separate labeled source domain.
We propose a novel and efficient algorithm which automatically combines the source models with suitable weights in such a way that it performs at least as good as the best source model.
arXiv Detail & Related papers (2021-04-05T10:45:12Z) - Source-Free Domain Adaptation for Semantic Segmentation [11.722728148523366]
Unsupervised Domain Adaptation (UDA) can tackle the challenge that convolutional neural network-based approaches for semantic segmentation heavily rely on the pixel-level annotated data.
We propose a source-free domain adaptation framework for semantic segmentation, namely SFDA, in which only a well-trained source model and an unlabeled target domain dataset are available for adaptation.
arXiv Detail & Related papers (2021-03-30T14:14:29Z) - Towards Inheritable Models for Open-Set Domain Adaptation [56.930641754944915]
We introduce a practical Domain Adaptation paradigm where a source-trained model is used to facilitate adaptation in the absence of the source dataset in future.
We present an objective way to quantify inheritability to enable the selection of the most suitable source model for a given target domain, even in the absence of the source data.
arXiv Detail & Related papers (2020-04-09T07:16:30Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.