Deep Neural Networks and Brain Alignment: Brain Encoding and Decoding (Survey)
- URL: http://arxiv.org/abs/2307.10246v2
- Date: Mon, 8 Jul 2024 13:44:56 GMT
- Title: Deep Neural Networks and Brain Alignment: Brain Encoding and Decoding (Survey)
- Authors: Subba Reddy Oota, Zijiao Chen, Manish Gupta, Raju S. Bapi, Gael Jobard, Frederic Alexandre, Xavier Hinaut,
- Abstract summary: Can we obtain insights about the brain using AI models?
How is the information in deep learning models related to brain recordings?
Decoding models solve the inverse problem of reconstructing stimuli given the fMRI.
Inspired by the effectiveness of deep learning models for natural language processing, computer vision, and speech, several neural encoding and decoding models have been recently proposed.
- Score: 9.14580723964253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Can we obtain insights about the brain using AI models? How is the information in deep learning models related to brain recordings? Can we improve AI models with the help of brain recordings? Such questions can be tackled by studying brain recordings like functional magnetic resonance imaging (fMRI). As a first step, the neuroscience community has contributed several large cognitive neuroscience datasets related to passive reading/listening/viewing of concept words, narratives, pictures, and movies. Encoding and decoding models using these datasets have also been proposed in the past two decades. These models serve as additional tools for basic cognitive science and neuroscience research. Encoding models aim at generating fMRI brain representations given a stimulus automatically. They have several practical applications in evaluating and diagnosing neurological conditions and thus may also help design therapies for brain damage. Decoding models solve the inverse problem of reconstructing the stimuli given the fMRI. They are useful for designing brain-machine or brain-computer interfaces. Inspired by the effectiveness of deep learning models for natural language processing, computer vision, and speech, several neural encoding and decoding models have been recently proposed. In this survey, we will first discuss popular representations of language, vision and speech stimuli, and present a summary of neuroscience datasets. Further, we will review popular deep learning based encoding and decoding architectures and note their benefits and limitations. Finally, we will conclude with a summary and discussion about future trends. Given the large amount of recently published work in the computational cognitive neuroscience (CCN) community, we believe that this survey enables an entry point for DNN researchers to diversify into CCN research.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Decoding Linguistic Representations of Human Brain [21.090956290947275]
We present a taxonomy of brain-to-language decoding of both textual and speech formats.
This work integrates two types of research: neuroscience focusing on language understanding and deep learning-based brain decoding.
arXiv Detail & Related papers (2024-07-30T07:55:44Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - A Review of Findings from Neuroscience and Cognitive Psychology as
Possible Inspiration for the Path to Artificial General Intelligence [0.0]
This review aims to contribute to the quest for artificial general intelligence by examining neuroscience and cognitive psychology methods.
Despite the impressive advancements achieved by deep learning models, they still have shortcomings in abstract reasoning and causal understanding.
arXiv Detail & Related papers (2024-01-03T09:46:36Z) - Brain-inspired Computing Based on Deep Learning for Human-computer Interaction: A Review [1.18749525824656]
Brain-inspired computing is an important intersection between multimodal technology and biomedical field.
This paper presents a review of the brain-inspired computing models based on deep learning (DL), tracking its evolution, application value, challenges and potential research trends.
Despite significant advances in brain-inspired computational models, challenges remain to fully exploit their capabilities.
arXiv Detail & Related papers (2023-12-12T12:26:37Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - In the realm of hybrid Brain: Human Brain and AI [0.0]
Current brain-computer interface (BCI) technology is mainly on therapeutic outcomes.
Recently, artificial intelligence (AI) and machine learning (ML) technologies have been used to decode brain signals.
We envision the development of closed loop, intelligent, low-power, and miniaturized neural interfaces.
arXiv Detail & Related papers (2022-10-04T08:35:34Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Brain Co-Processors: Using AI to Restore and Augment Brain Function [2.3986080077861787]
We introduce brain co-processors, devices that combine decoding and encoding in a unified framework using artificial intelligence (AI)
Brain co-processors can be used for a range of applications, from inducing Hebbian plasticity for rehabilitation after brain injury to reanimating paralyzed limbs and enhancing memory.
We describe a new framework for developing brain co-processors based on artificial neural networks, deep learning and reinforcement learning.
arXiv Detail & Related papers (2020-12-06T21:06:28Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
We propose that the immature prefrontal cortex (PFC) use its primary functionality of detecting hierarchical patterns in temporal signals.
Our hypothesis is that the PFC detects the hierarchical structure in temporal sequences in the form of ordinal patterns and use them to index information hierarchically in different parts of the brain.
By doing so, it gives the tools to the language-ready brain for manipulating abstract knowledge and planning temporally ordered information.
arXiv Detail & Related papers (2020-05-22T14:29:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.