Brain Co-Processors: Using AI to Restore and Augment Brain Function
- URL: http://arxiv.org/abs/2012.03378v1
- Date: Sun, 6 Dec 2020 21:06:28 GMT
- Title: Brain Co-Processors: Using AI to Restore and Augment Brain Function
- Authors: Rajesh P. N. Rao
- Abstract summary: We introduce brain co-processors, devices that combine decoding and encoding in a unified framework using artificial intelligence (AI)
Brain co-processors can be used for a range of applications, from inducing Hebbian plasticity for rehabilitation after brain injury to reanimating paralyzed limbs and enhancing memory.
We describe a new framework for developing brain co-processors based on artificial neural networks, deep learning and reinforcement learning.
- Score: 2.3986080077861787
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Brain-computer interfaces (BCIs) use decoding algorithms to control
prosthetic devices based on brain signals for restoration of lost function.
Computer-brain interfaces (CBIs), on the other hand, use encoding algorithms to
transform external sensory signals into neural stimulation patterns for
restoring sensation or providing sensory feedback for closed-loop prosthetic
control. In this article, we introduce brain co-processors, devices that
combine decoding and encoding in a unified framework using artificial
intelligence (AI) to supplement or augment brain function. Brain co-processors
can be used for a range of applications, from inducing Hebbian plasticity for
rehabilitation after brain injury to reanimating paralyzed limbs and enhancing
memory. A key challenge is simultaneous multi-channel neural decoding and
encoding for optimization of external behavioral or task-related goals. We
describe a new framework for developing brain co-processors based on artificial
neural networks, deep learning and reinforcement learning. These "neural
co-processors" allow joint optimization of cost functions with the nervous
system to achieve desired behaviors. By coupling artificial neural networks
with their biological counterparts, neural co-processors offer a new way of
restoring and augmenting the brain, as well as a new scientific tool for brain
research. We conclude by discussing the potential applications and ethical
implications of brain co-processors.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Deep Neural Networks and Brain Alignment: Brain Encoding and Decoding (Survey) [9.14580723964253]
Can we obtain insights about the brain using AI models?
How is the information in deep learning models related to brain recordings?
Decoding models solve the inverse problem of reconstructing stimuli given the fMRI.
Inspired by the effectiveness of deep learning models for natural language processing, computer vision, and speech, several neural encoding and decoding models have been recently proposed.
arXiv Detail & Related papers (2023-07-17T06:54:36Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Neural Co-Processors for Restoring Brain Function: Results from a
Cortical Model of Grasping [0.0]
We propose "neural co-processors" which use artificial neural networks and deep learning to learn optimal closed-loop stimulation policies.
The co-processor adapts the stimulation policy as the biological circuit itself adapts to the stimulation, achieving a form of brain-device co-adaptation.
arXiv Detail & Related papers (2022-10-19T04:13:33Z) - In the realm of hybrid Brain: Human Brain and AI [0.0]
Current brain-computer interface (BCI) technology is mainly on therapeutic outcomes.
Recently, artificial intelligence (AI) and machine learning (ML) technologies have been used to decode brain signals.
We envision the development of closed loop, intelligent, low-power, and miniaturized neural interfaces.
arXiv Detail & Related papers (2022-10-04T08:35:34Z) - BrainCog: A Spiking Neural Network based Brain-inspired Cognitive
Intelligence Engine for Brain-inspired AI and Brain Simulation [16.83583563493804]
Spiking neural networks (SNNs) have attracted extensive attentions in Brain-inspired Artificial Intelligence and computational neuroscience.
We present the Brain-inspired Cognitive Intelligence Engine (BrainCog) for creating brain-inspired AI and brain simulation models.
arXiv Detail & Related papers (2022-07-18T11:53:31Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
Modern AI systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the brain.
This article discusses such limitations and the ways they can be mitigated.
It presents an overview of currently available neuromorphic AI projects in which these limitations are overcome.
arXiv Detail & Related papers (2022-05-25T20:16:05Z) - A Robust Learning Rule for Soft-Bounded Memristive Synapses Competitive
with Supervised Learning in Standard Spiking Neural Networks [0.0]
A view in theoretical neuroscience sees the brain as a function-computing device.
Being able to approximate functions is a fundamental axiom to build upon for future brain research.
In this work we apply a novel supervised learning algorithm - based on controlling niobium-doped strontium titanate memristive synapses - to learning non-trivial multidimensional functions.
arXiv Detail & Related papers (2022-04-12T10:21:22Z) - Neurocoder: Learning General-Purpose Computation Using Stored Neural
Programs [64.56890245622822]
Neurocoder is an entirely new class of general-purpose conditional computational machines.
It "codes" itself in a data-responsive way by composing relevant programs from a set of shareable, modular programs.
We show new capacity to learn modular programs, handle severe pattern shifts and remember old programs as new ones are learnt.
arXiv Detail & Related papers (2020-09-24T01:39:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.