Probing quantum chaos with the entropy of decoherent histories
- URL: http://arxiv.org/abs/2307.10269v3
- Date: Tue, 23 Apr 2024 09:49:12 GMT
- Title: Probing quantum chaos with the entropy of decoherent histories
- Authors: Evgeny Polyakov, Nataliya Arefyeva,
- Abstract summary: Quantum chaos, a phenomenon that began to be studied in the last century, still does not have a rigorous understanding.
We propose the quantum chaos definition in the manner similar to the classical one using decoherent histories as a quantum analogue of trajectories.
We show that for such a model, the production of entropy of decoherent histories is radically different in integrable and chaotic regimes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum chaos, a phenomenon that began to be studied in the last century, still does not have a rigorous understanding. By virtue of the correspondence principle, the properties of the system that lead to chaotic dynamics at the classical level must also be present in the underlying quantum system. In the classical case, the exponential divergence of nearby trajectories in time is described in terms of the Lyapunov exponent. However, in the quantum case, a similar description of chaos is, strictly speaking, impossible due to absence of trajectories. There are different approaches to remedy this situation, but the universal criterion of quantum chaos is absent. We propose the quantum chaos definition in the manner similar to the classical one using decoherent histories as a quantum analogue of trajectories. For this purpose, we consider the model of an open quantum kicked top interacting with the environment, which is a bosonic bath, and illustrate this idea. Here, the environment plays the role of a trajectory recording device. For the kicked top model at the classical level, depending on the kick strength, crossover occurs between the integrable and chaotic regimes. We show that for such a model, the production of entropy of decoherent histories is radically different in integrable and chaotic regimes. Thus, the entropy of an ensemble of quantum trajectories can be used as a signature of quantum chaos.
Related papers
- Bath Dynamical Decoupling with a Quantum Channel [44.99833362998488]
We generalize the notion of dynamical decoupling to repeated kicks with a quantum channel.
We find that bath dynamical decoupling works if and only if the kick is ergodic.
arXiv Detail & Related papers (2024-09-27T07:47:52Z) - Information acquisition, scrambling, and sensitivity to errors in quantum chaos [0.0]
Signatures of chaos can be understood by studying quantum systems whose classical counterpart is chaotic.
concepts of integrability, non-integrability and chaos extend to systems without a classical analogue.
arXiv Detail & Related papers (2024-09-22T06:31:14Z) - Attractive-repulsive interaction in coupled quantum oscillators [14.37149160708975]
We find an interesting symmetry-breaking transition from quantum limit cycle oscillation to quantum inhomogeneous steady state.
This transition is contrary to the previously known symmetry-breaking transition from quantum homogeneous to inhomogeneous steady state.
Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analogue in the classical domain.
arXiv Detail & Related papers (2024-08-23T10:45:19Z) - Chaos and magic in the dissipative quantum kicked top [0.0]
We consider an infinite-range interacting quantum spin-1/2 model, undergoing periodic kicking and dissipatively coupled with an environment.
We find that the nonstabilizerness averaged over trajectories, mirrors the classical chaotic behavior, while the entanglement entropy has no relation with chaos in the thermodynamic limit.
arXiv Detail & Related papers (2024-06-24T12:19:19Z) - A study of chaos and randomness in quantum systems [0.0]
How classical chaos emerges from the underlying quantum world is a fundamental problem in physics.
One can understand the quantum signatures of classical chaos by studying a quantum system whose classical analogue is chaotic.
We study out-of-time-ordered computationors (OTOCs) and Loschmidt echo, the two well-known dynamical diagnostics of chaos.
arXiv Detail & Related papers (2024-02-01T02:35:01Z) - Quantum irreversibility of quasistatic protocols for finite-size
quantized systems [2.4155294046665046]
Quantum mechanically, a driving process is expected to be reversible in the quasistatic limit, also known as the adiabatic theorem.
A paradigm for demonstrating the signatures of chaos in quantum irreversibility is a sweep process whose objective is to transfer condensed bosons from a source orbital.
We show that such a protocol is dominated by an interplay of adiabatic-shuttling and chaos-assisted depletion processes.
arXiv Detail & Related papers (2022-12-11T14:16:15Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Classical route to quantum chaotic motions [11.153740626675996]
We extract the information of a quantum motion and decode it into a certain orbit via a single measurable quantity.
We present a strategy to import classical chaos to a quantum system, revealing a connection between the classical and quantum worlds.
arXiv Detail & Related papers (2020-05-15T18:00:02Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.