論文の概要: PharmacyGPT: The AI Pharmacist
- arxiv url: http://arxiv.org/abs/2307.10432v1
- Date: Wed, 19 Jul 2023 19:40:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 15:50:46.635930
- Title: PharmacyGPT: The AI Pharmacist
- Title(参考訳): 薬局GPT:AI薬剤師
- Authors: Zhengliang Liu, Zihao Wu, Mengxuan Hu, Bokai Zhao, Lin Zhao, Tianyi
Zhang, Haixing Dai, Xianyan Chen, Ye Shen, Sheng Li, Brian Murray, Tianming
Liu, Andrea Sikora
- Abstract要約: 本稿では,臨床薬理士の役割を模擬した大規模言語モデル(LLM)の能力を評価するためのフレームワークであるPharmacyGPTを紹介する。
我々はノースカロライナ大学チャペルヒル病院(UNC)で集中治療室(ICU)から取得した実データを用いて調査を行った。
- 参考スコア(独自算出の注目度): 13.05835911291277
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we introduce PharmacyGPT, a novel framework to assess the
capabilities of large language models (LLMs) such as ChatGPT and GPT-4 in
emulating the role of clinical pharmacists. Our methodology encompasses the
utilization of LLMs to generate comprehensible patient clusters, formulate
medication plans, and forecast patient outcomes. We conduct our investigation
using real data acquired from the intensive care unit (ICU) at the University
of North Carolina Chapel Hill (UNC) Hospital. Our analysis offers valuable
insights into the potential applications and limitations of LLMs in the field
of clinical pharmacy, with implications for both patient care and the
development of future AI-driven healthcare solutions. By evaluating the
performance of PharmacyGPT, we aim to contribute to the ongoing discourse
surrounding the integration of artificial intelligence in healthcare settings,
ultimately promoting the responsible and efficacious use of such technologies.
- Abstract(参考訳): 本研究では, chatgpt や gpt-4 などの大規模言語モデル (llm) が臨床薬剤師の役割を模倣する能力を評価するための新しい枠組みである pharmacygpt を紹介する。
本手法は, 患者クラスターの生成, 医薬品計画の定式化, 患者結果の予測にLLMの利用を包含する。
我々はノースカロライナ大学チャペルヒル病院(UNC)で集中治療室(ICU)から取得した実データを用いて調査を行った。
今回の分析は、臨床薬局におけるllmの応用可能性と限界について、患者ケアと将来のai駆動医療ソリューション開発の両方に有意義な洞察を与えてくれる。
薬局GPTの性能を評価することにより、医療環境における人工知能の統合に関する継続的な議論に寄与し、最終的にはこれらの技術の責任と有効利用を促進することを目指している。
関連論文リスト
- PALLM: Evaluating and Enhancing PALLiative Care Conversations with Large Language Models [10.258261180305439]
大規模言語モデル(LLM)は、複雑なコミュニケーションメトリクスを評価するための新しいアプローチを提供する。
LLMは受動的センシングシステムとジャスト・イン・タイム・イン・タイム・イン・イン・介入システムとの統合を通じて、分野を前進させる可能性を提供する。
本研究は, 言語, 文脈内学習, 推論能力を活用した緩和ケアコミュニケーションの質評価手法としてLLMについて検討する。
論文 参考訳(メタデータ) (2024-09-23T16:39:12Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
大規模言語モデル(LLM)の創薬・開発分野への統合は、重要なパラダイムシフトである。
これらの先進的な計算モデルが、ターゲット・ディスリーズ・リンクを明らかにし、複雑なバイオメディカルデータを解釈し、薬物分子設計を強化し、薬物の有効性と安全性を予測し、臨床治験プロセスを促進する方法について検討する。
論文 参考訳(メタデータ) (2024-09-06T02:03:38Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
VLM(Vision-Language Models)は、医用画像を分析し、自然言語の相互作用に関与することによって、臨床医を支援する。
VLMはしばしば「幻覚的」な振る舞いを示し、文脈的マルチモーダル情報に基づかないテキスト出力を生成する。
本稿では,臨床推論の象徴的表現を用いて医療知識にVLMを基盤とする新たなアライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T23:19:28Z) - Automatic Interactive Evaluation for Large Language Models with State Aware Patient Simulator [21.60103376506254]
大きな言語モデル(LLM)は、人間の相互作用において顕著な熟練性を示している。
本稿では,SAPS(State-Aware patient Simulator)とAIE(Automated Interactive Evaluation)フレームワークを紹介する。
AIEとSAPSは、多ターン医師-患者シミュレーションを通じてLCMを評価するための動的で現実的なプラットフォームを提供する。
論文 参考訳(メタデータ) (2024-03-13T13:04:58Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - ABiMed: An intelligent and visual clinical decision support system for
medication reviews and polypharmacy management [3.843569766201585]
ABiMedの目的は、医薬品レビューと多薬局管理のための革新的な臨床決定支援システムを設計することである。
ABiMedは、ガイドラインの実装と、GPの電子健康記録から患者データを自動抽出し、薬剤師に転送すること、および視覚分析を用いてコンテキスト化された薬物知識を視覚的に提示すること、の2つのアプローチを関連付けている。
論文 参考訳(メタデータ) (2023-12-13T11:06:45Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
大規模言語モデル(LLM)は、人間のレベルの言語理解と推論を模倣する有望な能力を示している。
本稿では,医学におけるLSMの応用と意義について概説する。
論文 参考訳(メタデータ) (2023-11-03T13:51:36Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
本稿では,テキスト内薬物相乗学習のための新しい設定とモデルを提案する。
特定のがん細胞標的の文脈における10~20の薬物相乗関係の「個人化データセット」を作成した。
私たちの目標は、その文脈で追加の薬物シナジー関係を予測することです。
論文 参考訳(メタデータ) (2023-06-19T17:03:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。