論文の概要: Performance of Large Language Models in Supporting Medical Diagnosis and Treatment
- arxiv url: http://arxiv.org/abs/2504.10405v1
- Date: Mon, 14 Apr 2025 16:53:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:54:42.849628
- Title: Performance of Large Language Models in Supporting Medical Diagnosis and Treatment
- Title(参考訳): 医療診断・治療支援における大規模言語モデルの性能評価
- Authors: Diogo Sousa, Guilherme Barbosa, Catarina Rocha, Dulce Oliveira,
- Abstract要約: AI駆動システムは、膨大なデータセットを分析し、臨床医が病気を特定し、治療を推奨し、患者の結果を予測するのを支援する。
本研究は,2024年のポルトガル国立試験場において,オープンソースモデルとクローズドソースモデルの両方を含む,現代LLMの性能評価を行った。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The integration of Large Language Models (LLMs) into healthcare holds significant potential to enhance diagnostic accuracy and support medical treatment planning. These AI-driven systems can analyze vast datasets, assisting clinicians in identifying diseases, recommending treatments, and predicting patient outcomes. This study evaluates the performance of a range of contemporary LLMs, including both open-source and closed-source models, on the 2024 Portuguese National Exam for medical specialty access (PNA), a standardized medical knowledge assessment. Our results highlight considerable variation in accuracy and cost-effectiveness, with several models demonstrating performance exceeding human benchmarks for medical students on this specific task. We identify leading models based on a combined score of accuracy and cost, discuss the implications of reasoning methodologies like Chain-of-Thought, and underscore the potential for LLMs to function as valuable complementary tools aiding medical professionals in complex clinical decision-making.
- Abstract(参考訳): LLM(Large Language Models)の医療への統合は、診断精度を高め、医療計画を支援する大きな可能性を秘めている。
これらのAI駆動システムは、膨大なデータセットを分析し、臨床医が病気を特定し、治療を推奨し、患者の結果を予測するのを助ける。
本研究は,2024年ポルトガル国立医療専門試験会(PNA)において,オープンソースモデルとクローズドソースモデルを含む同時代のLCMの性能評価を行った。
本研究の結果は, 医学生に対する評価基準を上回る性能を示す複数のモデルを用いて, 精度と費用効率のかなりの変動を明らかにした。
我々は、精度とコストの合計スコアに基づいて先行モデルを同定し、Chain-of-Thoughtのような推論手法がもたらす意味を議論し、LSMが複雑な臨床的意思決定における医療専門家を支援する貴重な補完ツールとして機能する可能性を強調した。
関連論文リスト
- LLM-MedQA: Enhancing Medical Question Answering through Case Studies in Large Language Models [18.6994780408699]
大規模言語モデル (LLM) は、医学的質問応答において重大な課題に直面している。
マルチエージェント医療質問応答システムに類似の事例生成を取り入れた新しい手法を提案する。
本手法は, モデル固有の医療知識と推論能力を活用し, 追加のトレーニングデータの必要性を解消する。
論文 参考訳(メタデータ) (2024-12-31T19:55:45Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
大規模言語モデル(LLM)は、医療のさまざまな側面に革命をもたらすことのできる、変革的なAIツールのクラスである。
本チュートリアルは、LSMを臨床実践に効果的に統合するために必要なツールを医療専門家に提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-24T15:41:56Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - The Role of Language Models in Modern Healthcare: A Comprehensive Review [2.048226951354646]
医療における大規模言語モデル(LLM)の適用は注目されている。
本稿では,言語モデルの初期から現在までの軌跡を概観する。
論文 参考訳(メタデータ) (2024-09-25T12:15:15Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
本稿では,大規模言語モデルと特定の診断規則との整合性を考慮したルールアラインフレームワークを提案する。
患者と医師間の規則に基づくコミュニケーションを含む医療対話データセットを開発した。
実験の結果,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-22T17:44:40Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - MedLM: Exploring Language Models for Medical Question Answering Systems [2.84801080855027]
大きな言語モデル(LLM)とその高度な生成能力は、様々なNLPタスクにおいて有望であることを示している。
本研究の目的は,医療用Q&Aにおける一般用および医療用蒸留機の性能を比較することである。
この知見は、医学領域における特定の用途における異なるLMの適合性に関する貴重な知見を提供する。
論文 参考訳(メタデータ) (2024-01-21T03:37:47Z) - Deciphering Diagnoses: How Large Language Models Explanations Influence
Clinical Decision Making [0.0]
大きな言語モデル(LLM)は、医学的な決定のための平文の説明を生成するための有望なツールとして現れています。
本研究は, 患者の苦情に基づく診断のための説明書作成におけるLCMの有効性と信頼性について検討した。
論文 参考訳(メタデータ) (2023-10-03T00:08:23Z) - Leveraging Medical Knowledge Graphs Into Large Language Models for Diagnosis Prediction: Design and Application Study [6.10474409373543]
自動診断におけるLarge Language Models (LLMs) の習熟度を高めるための革新的なアプローチを提案する。
我々は,国立医科大学統一医療言語システム(UMLS)からKGを抽出した。
我々のアプローチは説明可能な診断経路を提供し、AIによる診断決定支援システムの実現に近づいている。
論文 参考訳(メタデータ) (2023-08-28T06:05:18Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
本稿では,ソフトプロンプトを用いたモデルに依存しないパイプラインを導入し,確率に基づく要約の利点を保ちながら分散を減少させる。
実験結果から,本手法は性能を向上するだけでなく,様々な言語モデルの分散を効果的に抑制することが明らかとなった。
論文 参考訳(メタデータ) (2023-03-23T04:47:46Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。