SentiLSTM: A Deep Learning Approach for Sentiment Analysis of Restaurant
Reviews
- URL: http://arxiv.org/abs/2011.09684v1
- Date: Thu, 19 Nov 2020 06:24:42 GMT
- Title: SentiLSTM: A Deep Learning Approach for Sentiment Analysis of Restaurant
Reviews
- Authors: Eftekhar Hossain, Omar Sharif, Mohammed Moshiul Hoque, Iqbal H. Sarker
- Abstract summary: This paper proposes, a deep learning-based technique (i.e., BiLSTM) to classify the reviews provided by the clients of the restaurant into positive and negative polarities.
The results of the evaluation on test dataset show that BiLSTM technique produced in the highest accuracy of 91.35%.
- Score: 13.018530502810128
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The amount of textual data generation has increased enormously due to the
effortless access of the Internet and the evolution of various web 2.0
applications. These textual data productions resulted because of the people
express their opinion, emotion or sentiment about any product or service in the
form of tweets, Facebook post or status, blog write up, and reviews. Sentiment
analysis deals with the process of computationally identifying and categorizing
opinions expressed in a piece of text, especially in order to determine whether
the writer's attitude toward a particular topic is positive, negative, or
neutral. The impact of customer review is significant to perceive the customer
attitude towards a restaurant. Thus, the automatic detection of sentiment from
reviews is advantageous for the restaurant owners, or service providers and
customers to make their decisions or services more satisfactory. This paper
proposes, a deep learning-based technique (i.e., BiLSTM) to classify the
reviews provided by the clients of the restaurant into positive and negative
polarities. A corpus consists of 8435 reviews is constructed to evaluate the
proposed technique. In addition, a comparative analysis of the proposed
technique with other machine learning algorithms presented. The results of the
evaluation on test dataset show that BiLSTM technique produced in the highest
accuracy of 91.35%.
Related papers
- Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs [57.16442740983528]
In ad-hoc retrieval, evaluation relies heavily on user actions, including implicit feedback.
The role of user feedback in annotators' assessment of turns in a conversational perception has been little studied.
We focus on how the evaluation of task-oriented dialogue systems ( TDSs) is affected by considering user feedback, explicit or implicit, as provided through the follow-up utterance of a turn being evaluated.
arXiv Detail & Related papers (2024-04-19T16:45:50Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
This paper proposes several article-level, field-normalized, and large language model-empowered bibliometric indicators to evaluate reviews.
The newly emerging AI-generated literature reviews are also appraised.
This work offers insights into the current challenges of literature reviews and envisions future directions for their development.
arXiv Detail & Related papers (2024-02-20T11:28:50Z) - Unmasking Falsehoods in Reviews: An Exploration of NLP Techniques [0.0]
This research paper proposes a machine learning model to identify deceptive reviews.
To accomplish this, an n-gram model and max features are developed to effectively identify deceptive content.
The experimental results reveal that the passive aggressive classifier stands out among the various algorithms.
arXiv Detail & Related papers (2023-07-20T06:35:43Z) - Leveraging ChatGPT As Text Annotation Tool For Sentiment Analysis [6.596002578395151]
ChatGPT is a new product of OpenAI and has emerged as the most popular AI product.
This study explores the use of ChatGPT as a tool for data labeling for different sentiment analysis tasks.
arXiv Detail & Related papers (2023-06-18T12:20:42Z) - 5-Star Hotel Customer Satisfaction Analysis Using Hybrid Methodology [0.0]
Our research suggests a new way to find factors for customer satisfaction through review data.
Unlike many studies on customer satisfaction that have been conducted in the past, our research has a novelty of the thesis.
arXiv Detail & Related papers (2022-09-26T04:53:10Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
We propose a Sentiment-aware Interactive Fusion Network (SIFN) for review-based item recommendation.
We first encode user/item reviews via BERT and propose a light-weighted sentiment learner to extract semantic features of each review.
Then, we propose a sentiment prediction task that guides the sentiment learner to extract sentiment-aware features via explicit sentiment labels.
arXiv Detail & Related papers (2021-08-18T08:04:38Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
We propose a weakly-supervised approach for aspect-based sentiment analysis.
We learn sentiment, aspect> joint topic embeddings in the word embedding space.
We then use neural models to generalize the word-level discriminative information.
arXiv Detail & Related papers (2020-10-13T21:33:24Z) - Sentiment Analysis on Customer Responses [0.0]
We present a customer feedback reviews on product, where we utilize opinion mining, text mining and sentiments.
This research paper provides you with sentimental analysis of various smart phone opinions on smart phones dividing them Positive, Negative and Neutral Behaviour.
arXiv Detail & Related papers (2020-07-05T04:50:40Z) - A Unified Dual-view Model for Review Summarization and Sentiment
Classification with Inconsistency Loss [51.448615489097236]
Acquiring accurate summarization and sentiment from user reviews is an essential component of modern e-commerce platforms.
We propose a novel dual-view model that jointly improves the performance of these two tasks.
Experiment results on four real-world datasets from different domains demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2020-06-02T13:34:11Z) - Sentiment Analysis Using Averaged Weighted Word Vector Features [1.2691047660244332]
We develop two methods that combine different types of word vectors to learn and estimate polarity of reviews.
We apply the methods to several datasets from different domains that are used as standard benchmarks for sentiment analysis.
arXiv Detail & Related papers (2020-02-13T16:30:34Z) - Latent Opinions Transfer Network for Target-Oriented Opinion Words
Extraction [63.70885228396077]
We propose a novel model to transfer opinions knowledge from resource-rich review sentiment classification datasets to low-resource task TOWE.
Our model achieves better performance compared to other state-of-the-art methods and significantly outperforms the base model without transferring opinions knowledge.
arXiv Detail & Related papers (2020-01-07T11:50:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.