Impression-Aware Recommender Systems
- URL: http://arxiv.org/abs/2308.07857v2
- Date: Tue, 17 Dec 2024 00:14:25 GMT
- Title: Impression-Aware Recommender Systems
- Authors: Fernando B. Pérez Maurera, Maurizio Ferrari Dacrema, Pablo Castells, Paolo Cremonesi,
- Abstract summary: We present a systematic literature review on recommender systems using impressions.<n>We define a theoretical framework to delimit recommender systems using impressions and a novel paradigm for personalized recommendations, called impression-aware recommender systems.
- Score: 53.48892326556546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Novel data sources bring new opportunities to improve the quality of recommender systems and serve as a catalyst for the creation of new paradigms on personalized recommendations. Impressions are a novel data source containing the items shown to users on their screens. Past research focused on providing personalized recommendations using interactions, and occasionally using impressions when such a data source was available. Interest in impressions has increased due to their potential to provide more accurate recommendations. Despite this increased interest, research in recommender systems using impressions is still dispersed. Many works have distinct interpretations of impressions and use impressions in recommender systems in numerous different manners. To unify those interpretations into a single framework, we present a systematic literature review on recommender systems using impressions, focusing on three fundamental perspectives: recommendation models, datasets, and evaluation methodologies. We define a theoretical framework to delimit recommender systems using impressions and a novel paradigm for personalized recommendations, called impression-aware recommender systems. We propose a classification system for recommenders in this paradigm, which we use to categorize the recommendation models, datasets, and evaluation methodologies used in past research. Lastly, we identify open questions and future directions, highlighting missing aspects in the reviewed literature.
Related papers
- Incorporating Classifier-Free Guidance in Diffusion Model-Based Recommendation [0.0]
Diffusion is a new approach to generative AI that improves on previous generative AI approaches.
We incorporate diffusion in a recommender system that mirrors the sequence users take when browsing and rating items.
arXiv Detail & Related papers (2024-09-16T17:27:27Z) - Review of Explainable Graph-Based Recommender Systems [2.1711205684359247]
This review paper discusses state-of-the-art approaches of explainable graph-based recommender systems.
It categorizes them based on three aspects: learning methods, explaining methods, and explanation types.
arXiv Detail & Related papers (2024-07-31T21:30:36Z) - Making Recommender Systems More Knowledgeable: A Framework to Incorporate Side Information [5.033504076393256]
We propose a general framework for incorporating item-specific side information into the recommender system to enhance its performance.
We show that with side information, our recommender system outperforms state-of-the-art models by a considerable margin.
We also propose a new type of loss to regularize the attention mechanism used by recommender systems and evaluate its influence on model performance.
arXiv Detail & Related papers (2024-06-02T04:33:52Z) - Review-based Recommender Systems: A Survey of Approaches, Challenges and Future Perspectives [11.835903510784735]
Review-based recommender systems have emerged as a significant sub-field in this domain.
We present a categorization of these systems and summarize the state-of-the-art methods, analyzing their unique features, effectiveness, and limitations.
We propose potential directions for future research, including the integration of multimodal data, multi-criteria rating information, and ethical considerations.
arXiv Detail & Related papers (2024-05-09T05:45:18Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
A crucial aspect is embedding techniques that covert the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors.
Applying embedding techniques captures complex entity relationships and has spurred substantial research.
This survey covers embedding methods like collaborative filtering, self-supervised learning, and graph-based techniques.
arXiv Detail & Related papers (2023-10-28T06:31:06Z) - Robust Recommender System: A Survey and Future Directions [58.87305602959857]
We first present a taxonomy to organize current techniques for withstanding malicious attacks and natural noise.
We then explore state-of-the-art methods in each category, including fraudster detection, adversarial training, certifiable robust training for defending against malicious attacks.
We discuss robustness across varying recommendation scenarios and its interplay with other properties like accuracy, interpretability, privacy, and fairness.
arXiv Detail & Related papers (2023-09-05T08:58:46Z) - Recent Developments in Recommender Systems: A Survey [34.810859384592355]
The study starts with a comprehensive summary of the main taxonomy of recommender systems, including personalized and group recommender systems.
The survey analyzes the robustness, data bias, and fairness issues in recommender systems.
The study provides insights into the latest trends in the development of recommender systems and highlights the new directions for future research in the field.
arXiv Detail & Related papers (2023-06-22T05:51:49Z) - Recommender Systems: A Primer [7.487718119544156]
We provide an overview of the traditional formulation of the recommendation problem.
We then review the classical algorithmic paradigms for item retrieval and ranking.
We discuss a number of recent developments in recommender systems research.
arXiv Detail & Related papers (2023-02-06T06:19:05Z) - Tag-Aware Document Representation for Research Paper Recommendation [68.8204255655161]
We propose a hybrid approach that leverages deep semantic representation of research papers based on social tags assigned by users.
The proposed model is effective in recommending research papers even when the rating data is very sparse.
arXiv Detail & Related papers (2022-09-08T09:13:07Z) - A Review on Pushing the Limits of Baseline Recommendation Systems with
the integration of Opinion Mining & Information Retrieval Techniques [0.0]
Recommendation Systems allow users to identify trending items among a community while being timely and relevant to the user's expectations.
Deep Learning methods have been brought forward to achieve better quality recommendations.
Researchers have tried to expand on the capabilities of standard recommendation systems to provide the most effective recommendations.
arXiv Detail & Related papers (2022-05-03T22:13:33Z) - A Survey on Neural Recommendation: From Collaborative Filtering to
Content and Context Enriched Recommendation [70.69134448863483]
Research in recommendation has shifted to inventing new recommender models based on neural networks.
In recent years, we have witnessed significant progress in developing neural recommender models.
arXiv Detail & Related papers (2021-04-27T08:03:52Z) - Knowledge Transfer via Pre-training for Recommendation: A Review and
Prospect [89.91745908462417]
We show the benefits of pre-training to recommender systems through experiments.
We discuss several promising directions for future research for recommender systems with pre-training.
arXiv Detail & Related papers (2020-09-19T13:06:27Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
We conduct a systematical survey of knowledge graph-based recommender systems.
We focus on how the papers utilize the knowledge graph for accurate and explainable recommendation.
We introduce datasets used in these works.
arXiv Detail & Related papers (2020-02-28T02:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.