論文の概要: Label Calibration for Semantic Segmentation Under Domain Shift
- arxiv url: http://arxiv.org/abs/2307.10842v1
- Date: Thu, 20 Jul 2023 13:02:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 12:58:41.726852
- Title: Label Calibration for Semantic Segmentation Under Domain Shift
- Title(参考訳): ドメインシフト下におけるセマンティックセグメンテーションのためのラベル校正
- Authors: Ondrej Bohdal, Da Li, Timothy Hospedales
- Abstract要約: 本研究では,事前学習したモデルを,ドメインシフトの下でソフトラベルのプロトタイプを計算することで,未学習のターゲット領域データに適用可能であることを示す。
提案した適応手順は高速で、計算資源の面ではほとんど無料で提供され、大幅な性能向上をもたらす。
- 参考スコア(独自算出の注目度): 3.5382535469099436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Performance of a pre-trained semantic segmentation model is likely to
substantially decrease on data from a new domain. We show a pre-trained model
can be adapted to unlabelled target domain data by calculating soft-label
prototypes under the domain shift and making predictions according to the
prototype closest to the vector with predicted class probabilities. The
proposed adaptation procedure is fast, comes almost for free in terms of
computational resources and leads to considerable performance improvements. We
demonstrate the benefits of such label calibration on the highly-practical
synthetic-to-real semantic segmentation problem.
- Abstract(参考訳): 事前訓練されたセマンティックセグメンテーションモデルの性能は、新しいドメインのデータを大幅に低下させる可能性がある。
予測されたクラス確率を持つベクトルに最も近いプロトタイプに従って予測を行うことにより,事前学習したモデルを,ソフトラベルのプロトタイプを領域シフトで計算し,ラベル付き対象領域データに適用できることを示す。
提案した適応手順は高速で、計算資源の面ではほとんど無料で提供され、大幅な性能向上をもたらす。
このようなラベル校正の利点を,高度に実践的な合成から現実への意味的セグメンテーション問題に示す。
関連論文リスト
- Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
半教師付きマルチラベル学習(SSMLL)は、正確なマルチラベルアノテーションを収集するコストを削減するために、ラベルのないデータを活用する強力なフレームワークである。
半教師付き学習とは異なり、インスタンスに含まれる複数のセマンティクスのため、SSMLLの擬似ラベルとして最も確率の高いラベルを選択することはできない。
本稿では,高品質な擬似ラベルを生成するための二重パースペクティブ手法を提案する。
論文 参考訳(メタデータ) (2024-07-26T09:33:53Z) - Just Shift It: Test-Time Prototype Shifting for Zero-Shot Generalization with Vision-Language Models [19.683461002518147]
Test-Time Prototype Shifting (TPS)は、未ラベルのテスト入力を使用したデータセットのテストに視覚言語モデルを適用するために設計された先駆的なアプローチである。
TPSは、その後の予測のために最適化不要なプロトタイプの再利用を促進するだけでなく、プロンプトエンジニアリングにおける現在の進歩とシームレスに統合することを可能にする。
我々のフレームワークの特筆すべき点は、従来のテキストプロンプトチューニング手法と比較して、メモリと計算要求が大幅に削減されていることである。
論文 参考訳(メタデータ) (2024-03-19T17:54:34Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
本稿では,テスト時間適応性を高めるための新しい補完学習手法を提案する。
テスト時適応タスクでは、ソースドメインからの情報は通常利用できない。
我々は,相補ラベルのリスク関数がバニラ損失式と一致することを強調した。
論文 参考訳(メタデータ) (2023-01-15T03:36:33Z) - Query-Adaptive Predictive Inference with Partial Labels [0.0]
ブラックボックス予測モデル上に部分的にラベル付けされたデータのみを用いて予測集合を構築する新しい手法を提案する。
我々の実験は、予測セット構築の有効性と、よりフレキシブルなユーザ依存損失フレームワークの魅力を強調した。
論文 参考訳(メタデータ) (2022-06-15T01:48:42Z) - Model-Change Active Learning in Graph-Based Semi-Supervised Learning [5.174023161939957]
モデル変更」アクティブラーニングは、追加ラベルを導入して得られた変化を定量化する
後方分布のラプラス近似を用いて, 取得関数を効率的に近似できる凸損失関数の族を考える。
論文 参考訳(メタデータ) (2021-10-14T21:47:10Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
本稿では,いくつかの対象サンプルがラベル付けされていれば,ドメインシフトに対処するのにどの程度役立つか検討する。
ランドマークの可能性を最大限に追求するために、ランドマークから各クラスのターゲットプロトタイプを計算するプロトタイプアライメント(PA)モジュールを組み込んでいます。
具体的には,ラベル付き画像に深刻な摂動を生じさせ,PAを非自明にし,モデル一般化性を促進する。
論文 参考訳(メタデータ) (2021-04-19T08:46:08Z) - Selective Pseudo-Labeling with Reinforcement Learning for
Semi-Supervised Domain Adaptation [116.48885692054724]
半教師付きドメイン適応のための強化学習に基づく選択擬似ラベル法を提案する。
高精度かつ代表的な擬似ラベルインスタンスを選択するための深層Q-ラーニングモデルを開発する。
提案手法は, SSDAのベンチマークデータセットを用いて評価し, 全ての比較手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-12-07T03:37:38Z) - Improving Semantic Segmentation via Self-Training [75.07114899941095]
半教師付きアプローチ,特に自己学習パラダイムを用いて,最先端の成果を得ることができることを示す。
まず、ラベル付きデータに基づいて教師モデルを訓練し、次にラベルなしデータの大規模なセット上で擬似ラベルを生成する。
私たちの堅牢なトレーニングフレームワークは、人名と擬似ラベルを共同で消化し、Cityscapes、CamVid、KITTIデータセット上で最高のパフォーマンスを達成することができます。
論文 参考訳(メタデータ) (2020-04-30T17:09:17Z) - Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain
Adaptive Semantic Segmentation [49.295165476818866]
本稿では、意味的セグメンテーションの文脈において、ソースドメインからターゲットドメインへの知識伝達の教師なし領域適応に焦点を当てる。
既存のアプローチでは、通常、擬似ラベルを未ラベルのターゲットドメインデータを完全に活用するための基礎的真理とみなす。
本稿では,擬似ラベル学習の修正のために,学習中の予測の不確かさを明示的に推定することを提案する。
論文 参考訳(メタデータ) (2020-03-08T12:37:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。