HRFNet: High-Resolution Forgery Network for Localizing Satellite Image
Manipulation
- URL: http://arxiv.org/abs/2307.11052v1
- Date: Thu, 20 Jul 2023 17:33:57 GMT
- Title: HRFNet: High-Resolution Forgery Network for Localizing Satellite Image
Manipulation
- Authors: Fahim Faisal Niloy, Kishor Kumar Bhaumik, Simon S. Woo
- Abstract summary: Existing high-resolution satellite image forgery localization methods rely on patch-based or downsampling-based training.
We propose a novel model called HRFNet to enable satellite image forgery localization effectively.
- Score: 16.668334854459143
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing high-resolution satellite image forgery localization methods rely on
patch-based or downsampling-based training. Both of these training methods have
major drawbacks, such as inaccurate boundaries between pristine and forged
regions, the generation of unwanted artifacts, etc. To tackle the
aforementioned challenges, inspired by the high-resolution image segmentation
literature, we propose a novel model called HRFNet to enable satellite image
forgery localization effectively. Specifically, equipped with shallow and deep
branches, our model can successfully integrate RGB and resampling features in
both global and local manners to localize forgery more accurately. We perform
various experiments to demonstrate that our method achieves the best
performance, while the memory requirement and processing speed are not
compromised compared to existing methods.
Related papers
- Coherent and Multi-modality Image Inpainting via Latent Space Optimization [61.99406669027195]
PILOT (intextbfPainting vtextbfIa textbfLatent textbfOptextbfTimization) is an optimization approach grounded on a novel textitsemantic centralization and textitbackground preservation loss.
Our method searches latent spaces capable of generating inpainted regions that exhibit high fidelity to user-provided prompts while maintaining coherence with the background.
arXiv Detail & Related papers (2024-07-10T19:58:04Z) - SatDiffMoE: A Mixture of Estimation Method for Satellite Image Super-resolution with Latent Diffusion Models [3.839322642354617]
We propose a novel diffusion-based fusion algorithm called textbfSatDiffMoE.
Our algorithm is highly flexible and allows training and inference on arbitrary number of low-resolution images.
Experimental results show that our proposed SatDiffMoE method achieves superior performance for the satellite image super-resolution tasks.
arXiv Detail & Related papers (2024-06-14T17:58:28Z) - Single Image Internal Distribution Measurement Using Non-Local
Variational Autoencoder [11.985083962982909]
This paper proposes a novel image-specific solution, namely non-local variational autoencoder (textttNLVAE)
textttNLVAE is introduced as a self-supervised strategy that reconstructs high-resolution images using disentangled information from the non-local neighbourhood.
Experimental results from seven benchmark datasets demonstrate the effectiveness of the textttNLVAE model.
arXiv Detail & Related papers (2022-04-02T18:43:55Z) - Unsupervised Remote Sensing Super-Resolution via Migration Image Prior [12.728430583409997]
We propose a new unsupervised learning framework, called "MIP", which achieves super-resolution tasks without low/high resolution image pairs.
In this paper, we show that MIP achieves significant improvements over state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-05-08T03:29:35Z) - Best-Buddy GANs for Highly Detailed Image Super-Resolution [71.13466303340192]
We consider the single image super-resolution (SISR) problem, where a high-resolution (HR) image is generated based on a low-resolution (LR) input.
Most methods along this line rely on a predefined single-LR-single-HR mapping, which is not flexible enough for the SISR task.
We propose best-buddy GANs (Beby-GAN) for rich-detail SISR. Relaxing the immutable one-to-one constraint, we allow the estimated patches to dynamically seek the best supervision.
arXiv Detail & Related papers (2021-03-29T02:58:27Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - Efficient texture-aware multi-GAN for image inpainting [5.33024001730262]
Recent GAN-based (Generative adversarial networks) inpainting methods show remarkable improvements.
We propose a multi-GAN architecture improving both the performance and rendering efficiency.
arXiv Detail & Related papers (2020-09-30T14:58:03Z) - Fusion of Deep and Non-Deep Methods for Fast Super-Resolution of
Satellite Images [54.44842669325082]
This work proposes to bridge the gap between image quality and the price by improving the image quality via super-resolution (SR)
We design an SR framework that analyzes the regional information content on each patch of the low-resolution image.
We show substantial decrease in inference time while achieving similar performance to that of existing deep SR methods.
arXiv Detail & Related papers (2020-08-03T13:55:39Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) generates high-resolution, realistic images at resolutions previously unseen in the literature.
Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously possible.
arXiv Detail & Related papers (2020-03-08T16:44:31Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.