Floquetifying the Colour Code
- URL: http://arxiv.org/abs/2307.11136v2
- Date: Thu, 31 Aug 2023 07:03:34 GMT
- Title: Floquetifying the Colour Code
- Authors: Alex Townsend-Teague, Julio Magdalena de la Fuente, Markus Kesselring
- Abstract summary: We use the ZX-calculus to create new Floquet codes that are in a definable sense equivalent to known stabilizer codes.
This work shines a light on the relationship between'static' stabilizer and subsystem codes and 'dynamic' Floquet codes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Floquet codes are a recently discovered type of quantum error correction
code. They can be thought of as generalising stabilizer codes and subsystem
codes, by allowing the logical Pauli operators of the code to vary dynamically
over time. In this work, we use the ZX-calculus to create new Floquet codes
that are in a definable sense equivalent to known stabilizer codes. In
particular, we find a Floquet code that is equivalent to the colour code, but
has the advantage that all measurements required to implement it are of weight
one or two. Notably, the qubits can even be laid out on a square lattice. This
circumvents current difficulties with implementing the colour code
fault-tolerantly, while preserving its advantages over other well-studied
codes, and could furthermore allow one to benefit from extra features exclusive
to Floquet codes. On a higher level, as in arXiv:2303.08829, this work shines a
light on the relationship between 'static' stabilizer and subsystem codes and
'dynamic' Floquet codes; at first glance the latter seems a significant
generalisation of the former, but in the case of the codes that we find here,
the difference is essentially just a few basic ZX-diagram deformations.
Related papers
- Decoding Quasi-Cyclic Quantum LDPC Codes [23.22566380210149]
Quantum low-density parity-check (qLDPC) codes are an important component in the quest for fault tolerance.
Recent progress on qLDPC codes has led to constructions which are quantumally good, and which admit linear-time decoders to correct errors affecting a constant fraction of codeword qubits.
In practice, the surface/toric codes, which are the product of two repetition codes, are still often the qLDPC codes of choice.
arXiv Detail & Related papers (2024-11-07T06:25:27Z) - Simple Construction of Qudit Floquet Codes on a Family of Lattices [0.0]
We propose a simple, yet general construction of qudit Floquet codes based on a simple set of conditions on the sequence two-body measurements defining the code.
We show that this construction includes the existing constructions of both qubit and qudit Floquet codes as special cases.
In addition, any qudit Floquet code obtained by our construction achieves a rate of encoded logical qudits over physical qudits approaching $frac12$ as the number of physical qudits in total and on the faces of the lattice grows larger.
arXiv Detail & Related papers (2024-10-02T20:41:43Z) - Accommodating Fabrication Defects on Floquet Codes with Minimal Hardware Requirements [44.99833362998488]
Floquet codes provide good fault-tolerant characteristics while benefiting from reduced connectivity requirements in hardware.
This is an under-studied issue of crucial importance for running such codes on realistic hardware.
We introduce a new method of accommodating defective qubits on a wide range of two-dimensional Floquet codes.
arXiv Detail & Related papers (2024-05-24T18:00:05Z) - Quantum Codes on Graphs [0.0]
We consider some questions related to codes constructed using various graphs.
We consider Floquet codes which can be constructed using emergent fermions"
arXiv Detail & Related papers (2023-08-20T13:22:58Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
We discuss stabilizer quantum-error correction codes implemented in a single multi-level qudit.
These codes can be customized to the specific physical errors on the qudit, effectively suppressing them.
We demonstrate a Fault-Tolerant implementation on molecular spin qudits, showcasing nearly exponential error suppression with only linear qudit size growth.
arXiv Detail & Related papers (2023-07-20T10:51:23Z) - Homological Quantum Rotor Codes: Logical Qubits from Torsion [51.9157257936691]
homological quantum rotor codes allow one to encode both logical rotors and logical qudits in the same block of code.
We show that the $0$-$pi$-qubit as well as Kitaev's current-mirror qubit are indeed small examples of such codes.
arXiv Detail & Related papers (2023-03-24T00:29:15Z) - Quantum spherical codes [55.33545082776197]
We introduce a framework for constructing quantum codes defined on spheres by recasting such codes as quantum analogues of the classical spherical codes.
We apply this framework to bosonic coding, obtaining multimode extensions of the cat codes that can outperform previous constructions.
arXiv Detail & Related papers (2023-02-22T19:00:11Z) - Grand Unification of continuous-variable codes [0.0]
Quantum error correction codes in continuous variables (also called CV codes, or single-mode bosonic codes) have been identified to be a technologically viable option for building fault-tolerant quantum computers.
Best-known examples are the GKP code and the cat-code, both of which were shown to have some advantageous properties over any discrete-variable, or qubit codes.
It was recently shown that the cat-code, as well as other kinds of CV codes, belong to a set of codes with common properties called rotation-symmetric codes.
arXiv Detail & Related papers (2022-06-03T18:00:01Z) - Morphing quantum codes [77.34726150561087]
We morph the 15-qubit Reed-Muller code to obtain the smallest known stabilizer code with a fault-tolerant logical $T$ gate.
We construct a family of hybrid color-toric codes by morphing the color code.
arXiv Detail & Related papers (2021-12-02T17:43:00Z) - KO codes: Inventing Nonlinear Encoding and Decoding for Reliable
Wireless Communication via Deep-learning [76.5589486928387]
Landmark codes underpin reliable physical layer communication, e.g., Reed-Muller, BCH, Convolution, Turbo, LDPC and Polar codes.
In this paper, we construct KO codes, a computationaly efficient family of deep-learning driven (encoder, decoder) pairs.
KO codes beat state-of-the-art Reed-Muller and Polar codes, under the low-complexity successive cancellation decoding.
arXiv Detail & Related papers (2021-08-29T21:08:30Z) - Trellis Decoding For Qudit Stabilizer Codes And Its Application To Qubit
Topological Codes [3.9962751777898955]
We show that trellis decoders have strong structure, extend the results using classical coding theory as a guide, and demonstrate a canonical form from which the structural properties of the decoding graph may be computed.
The modified decoder works for any stabilizer code $S$ and separates into two parts: a one-time, offline which builds a compact, graphical representation of the normalizer of the code, $Sperp$, and a quick, parallel, online computation using the Viterbi algorithm.
arXiv Detail & Related papers (2021-06-15T16:01:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.