論文の概要: RCVaR: an Economic Approach to Estimate Cyberattacks Costs using Data
from Industry Reports
- arxiv url: http://arxiv.org/abs/2307.11140v1
- Date: Thu, 20 Jul 2023 17:52:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-24 14:41:53.733480
- Title: RCVaR: an Economic Approach to Estimate Cyberattacks Costs using Data
from Industry Reports
- Title(参考訳): RCVaR:産業報告データを用いたサイバー攻撃コスト推定のための経済的なアプローチ
- Authors: Muriel Figueredo Franco, Fabian K\"unzler, Jan von der Assen, Chao
Feng, Burkhard Stiller
- Abstract要約: 本稿では、サイバーセキュリティコストを見積もる経済的なアプローチであるReal Cyber Value at Risk (RCVaR)を紹介する。
RCVaRは、様々な情報源から最も重要なサイバーリスク要因を特定し、それらの定量的結果を組み合わせて、企業の特定のサイバー攻撃コストを見積もる。
- 参考スコア(独自算出の注目度): 8.45831177335402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digitization increases business opportunities and the risk of companies being
victims of devastating cyberattacks. Therefore, managing risk exposure and
cybersecurity strategies is essential for digitized companies that want to
survive in competitive markets. However, understanding company-specific risks
and quantifying their associated costs is not trivial. Current approaches fail
to provide individualized and quantitative monetary estimations of
cybersecurity impacts. Due to limited resources and technical expertise, SMEs
and even large companies are affected and struggle to quantify their
cyberattack exposure. Therefore, novel approaches must be placed to support the
understanding of the financial loss due to cyberattacks. This article
introduces the Real Cyber Value at Risk (RCVaR), an economical approach for
estimating cybersecurity costs using real-world information from public
cybersecurity reports. RCVaR identifies the most significant cyber risk factors
from various sources and combines their quantitative results to estimate
specific cyberattacks costs for companies. Furthermore, RCVaR extends current
methods to achieve cost and risk estimations based on historical real-world
data instead of only probability-based simulations. The evaluation of the
approach on unseen data shows the accuracy and efficiency of the RCVaR in
predicting and managing cyber risks. Thus, it shows that the RCVaR is a
valuable addition to cybersecurity planning and risk management processes.
- Abstract(参考訳): デジタル化は、破壊的なサイバー攻撃の犠牲者となる企業のビジネス機会とリスクを高める。
したがって、リスクエクスポージャーとサイバーセキュリティ戦略の管理は、競争力のある市場で生き残りたいデジタル企業にとって不可欠である。
しかし、企業固有のリスクの理解と関連するコストの定量化は簡単ではない。
現在のアプローチでは、サイバーセキュリティへの影響を個別かつ定量的に見積もることはできない。
限られた資源と技術的専門知識のため、中小企業や大企業でさえ、サイバー攻撃の暴露の定量化に苦慮している。
そのため、サイバー攻撃による損失の理解を支援するため、新たなアプローチをとらなければならない。
この記事では、公開サイバーセキュリティレポートから実際の情報を用いて、サイバーセキュリティコストを見積もるための経済的なアプローチであるReal Cyber Value at Risk (RCVaR)を紹介する。
RCVaRは、様々な情報源から最も重要なサイバーリスク要因を特定し、それらの定量的結果を組み合わせて、企業のサイバー攻撃コストを見積もる。
さらに、RCVaRは、確率に基づくシミュレーションだけでなく、過去の実世界のデータに基づくコストとリスク推定を実現するために、現在の手法を拡張している。
未確認データに対するアプローチの評価は、サイバーリスクの予測と管理におけるRCVaRの精度と効率を示している。
したがって、RCVaRはサイバーセキュリティ計画とリスク管理プロセスに価値ある追加であることを示している。
関連論文リスト
- Cyber Risk Taxonomies: Statistical Analysis of Cybersecurity Risk Classifications [0.0]
本論では,適応度とサンプル内性能に注目を移すことを優先して,サンプルのアウトオブサンプル予測性能に注目する。
以上の結果から,サイバーリスクイベントの不均一性を捉えるには,ビジネスモチベーションによるサイバーリスク分類があまりに制限的であり,柔軟性に乏しいことが示唆された。
論文 参考訳(メタデータ) (2024-10-04T04:12:34Z) - QBER: Quantifying Cyber Risks for Strategic Decisions [0.0]
意思決定者が測定可能なリスクメトリクスを提供するために、QBERアプローチを導入します。
QBERは、サイバー攻撃による損失を評価し、既存のサイバーセキュリティ対策に基づいて詳細なリスク分析を行い、完全なコスト評価を提供する。
我々の貢献は、サイバー攻撃の確率とリスクの概要、技術的、経済的、法的影響(TEL)の特定、影響を計測するモデルの作成、リスク軽減戦略の提案、広範囲にわたるサイバーリスク定量化(CRQ)の実施におけるトレンドと課題の調査である。
論文 参考訳(メタデータ) (2024-05-06T14:25:58Z) - A Data-Driven Predictive Analysis on Cyber Security Threats with Key Risk Factors [1.715270928578365]
本稿では、社会経済的要因を分析して、サイバー攻撃の犠牲者となる可能性のある個人を予測するための機械学習(ML)に基づくモデルを示す。
我々は,20個の特徴量(95.95%)で最大精度を達成した新しい特徴量ランダムフォレスト(RF)モデルを提案する。
我々は10の重要な関連ルールを生成し、実世界のデータセットで厳格に評価されたフレームワークを提示した。
論文 参考訳(メタデータ) (2024-03-28T09:41:24Z) - Mind the Gap: Securely modeling cyber risk based on security deviations
from a peer group [2.7910505923792646]
本稿では,特定の経済セクターにおいて,ピアに対するサイバー姿勢とサイバーリスクを推定する新たな枠組みを提案する。
我々は、組織とその仲間間の重み付けされたセキュリティギャップを表す、Defense Gap Indexと呼ばれる新しいトップライン変数を導入する。
このアプローチを,25の大企業から収集したデータを用いて,特定の分野に適用する。
論文 参考訳(メタデータ) (2024-02-06T17:22:45Z) - Reconciling AI Performance and Data Reconstruction Resilience for
Medical Imaging [52.578054703818125]
人工知能(AI)モデルは、トレーニングデータの情報漏洩に対して脆弱であり、非常に敏感である。
差別化プライバシ(DP)は、定量的なプライバシー予算を設定することで、これらの感受性を回避することを目的としている。
非常に大きなプライバシ予算を使用することで、リコンストラクション攻撃は不可能であり、パフォーマンスの低下は無視可能であることを示す。
論文 参考訳(メタデータ) (2023-12-05T12:21:30Z) - Designing an attack-defense game: how to increase robustness of
financial transaction models via a competition [69.08339915577206]
金融セクターにおける悪意ある攻撃のエスカレートリスクを考えると、機械学習モデルの敵戦略と堅牢な防御メカニズムを理解することが重要である。
本研究の目的は、逐次的な財務データを入力として使用するニューラルネットワークモデルに対する敵攻撃と防御の現状とダイナミクスを調査することである。
我々は、現代の金融取引データにおける問題の現実的かつ詳細な調査を可能にする競争を設計した。
参加者は直接対決するので、実生活に近い環境で攻撃や防御が検討される。
論文 参考訳(メタデータ) (2023-08-22T12:53:09Z) - On the Security Risks of Knowledge Graph Reasoning [71.64027889145261]
我々は、敵の目標、知識、攻撃ベクトルに応じて、KGRに対するセキュリティ脅威を体系化する。
我々は、このような脅威をインスタンス化する新しいタイプの攻撃であるROARを提示する。
ROARに対する潜在的な対策として,潜在的に有毒な知識のフィルタリングや,対向的な拡張クエリによるトレーニングについて検討する。
論文 参考訳(メタデータ) (2023-05-03T18:47:42Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - A robust statistical framework for cyber-vulnerability prioritisation under partial information in threat intelligence [0.0]
この研究は、サイバー脆弱性に関する不確実性の下で、定量的および質的な推論のための頑健な統計的枠組みを導入する。
我々は,既存の脆弱性の集合全体の部分的知識の下で,ばらつきのランクに適合する新しい精度尺度を同定する。
本稿では,サイバー脆弱性に関する部分的知識が,運用シナリオにおける脅威インテリジェンスと意思決定に与える影響について論じる。
論文 参考訳(メタデータ) (2023-02-16T15:05:43Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
信用リスクモデリングは重要な役割を果たす。
近年,機械学習や深層学習の手法が採用されている。
この分野における説明可能性問題に LIME 手法を適用することを提案する。
論文 参考訳(メタデータ) (2020-12-30T10:27:59Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
本稿では,PCAL(Adversarial Learning)に基づくプライバシ保護型信用リスクモデリングの枠組みを提案する。
PCALは、ターゲット予測タスクのパフォーマンスの重要なユーティリティ情報を維持しながら、元のデータセット内のプライベート情報を隠蔽することを目的としている。
結果は,PCALがユーザデータから効果的なプライバシフリー表現を学習し,信用リスク分析のためのプライバシ保存機械学習の基盤となることを示唆している。
論文 参考訳(メタデータ) (2020-10-06T07:04:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。