論文の概要: Generator-Retriever-Generator Approach for Open-Domain Question Answering
- arxiv url: http://arxiv.org/abs/2307.11278v3
- Date: Tue, 26 Mar 2024 16:40:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 01:20:23.381433
- Title: Generator-Retriever-Generator Approach for Open-Domain Question Answering
- Title(参考訳): オープンドメイン質問応答に対するジェネレータ・リトリバー・ジェネレータアプローチ
- Authors: Abdelrahman Abdallah, Adam Jatowt,
- Abstract要約: 文書検索手法と大規模言語モデル(LLM)を組み合わせた新しい手法を提案する。
並行して、デュアルエンコーダネットワークは、外部コーパスから質問に関連する文書を検索する。
GRGは最先端のgenerator-then-readおよびrecovery-then-readパイプラインより優れている。
- 参考スコア(独自算出の注目度): 18.950517545413813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open-domain question answering (QA) tasks usually require the retrieval of relevant information from a large corpus to generate accurate answers. We propose a novel approach called Generator-Retriever-Generator (GRG) that combines document retrieval techniques with a large language model (LLM), by first prompting the model to generate contextual documents based on a given question. In parallel, a dual-encoder network retrieves documents that are relevant to the question from an external corpus. The generated and retrieved documents are then passed to the second LLM, which generates the final answer. By combining document retrieval and LLM generation, our approach addresses the challenges of open-domain QA, such as generating informative and contextually relevant answers. GRG outperforms the state-of-the-art generate-then-read and retrieve-then-read pipelines (GENREAD and RFiD) improving their performance by at least by +5.2, +4.2, and +1.6 on TriviaQA, NQ, and WebQ datasets, respectively. We provide code, datasets, and checkpoints at https://github.com/abdoelsayed2016/GRG.
- Abstract(参考訳): オープンドメイン質問応答(QA)タスクは通常、正確な回答を生成するために、大きなコーパスから関連する情報を検索する必要がある。
本稿では,文書検索手法を大規模言語モデル (LLM) と組み合わせたGRG(Generator-Retriever-Generator) という手法を提案する。
並行して、デュアルエンコーダネットワークは、外部コーパスから質問に関連する文書を検索する。
生成された文書と検索された文書は、最終回答を生成する第2のLSMに渡される。
文書検索とLLM生成を組み合わせることで,情報的および文脈的関連性のある回答を生成するなど,オープンドメインQAの課題に対処する。
GRGは、TriviaQA、NQ、およびWebQデータセット上で、少なくとも+5.2、+4.2、+1.6の性能向上を達成している。
コード、データセット、チェックポイントは、https://github.com/abdoelsayed2016/GRG.comで公開しています。
関連論文リスト
- VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents [66.42579289213941]
Retrieval-augmented Generation (RAG) は、大規模言語モデルが外部知識ソースを生成に活用できる効果的な手法である。
本稿では,視覚言語モデル(VLM)に基づくRAGパイプラインを構築することで,この問題に対処するVisRAGを紹介する。
このパイプラインでは、まず文書を解析してテキストを得る代わりに、VLMを画像として直接埋め込んで、VLMの生成を強化する。
論文 参考訳(メタデータ) (2024-10-14T15:04:18Z) - Exploring Hint Generation Approaches in Open-Domain Question Answering [16.434748534272014]
HINTQAと呼ばれる新しいコンテキスト準備手法を導入する。
従来の方法とは異なり、HINTQA は LLM に対して質問に対する潜在的な答えのヒントを作成するよう促している。
提案手法は,検索した文脈や生成した文脈よりも解答の精度を高めるものである。
論文 参考訳(メタデータ) (2024-09-24T13:50:32Z) - Generate-then-Ground in Retrieval-Augmented Generation for Multi-hop Question Answering [45.82437926569949]
マルチホップ質問回答タスクは、大きな言語モデルにとって大きな課題となる。
マルチホップ問題の解法として,ジェネレーションセブングラウンド(GenGround)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-21T06:26:38Z) - CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.37076502395699]
検索拡張生成を用いたコード生成の系統的,大規模な解析を行う。
まず、コード生成タスクの3つのカテゴリを含む総合的な評価ベンチマークであるCodeRAG-Benchをキュレートする。
CodeRAG-Bench上のトップパフォーマンスモデルについて、1つまたは複数のソースから検索したコンテキストを提供することにより検討する。
論文 参考訳(メタデータ) (2024-06-20T16:59:52Z) - Harnessing Multi-Role Capabilities of Large Language Models for
Open-Domain Question Answering [40.2758450304531]
オープンドメイン質問応答 (ODQA) は情報システムにおいて重要な研究スポットライトとなっている。
本稿では,ODQA処理をクエリ拡張,文書選択,回答生成という3つの基本ステップに定式化するフレームワークを提案する。
我々は,ロールプレイングプロンプトを洗練するための新しいプロンプト最適化アルゴリズムを導入し,高品質なエビデンスと回答を生成する。
論文 参考訳(メタデータ) (2024-03-08T11:09:13Z) - UniGen: A Unified Generative Framework for Retrieval and Question
Answering with Large Language Models [22.457013726785295]
textbfUnified textbfGenerative framework for search and question answering。
UniGenは両方のタスクを単一の生成モデルに統合し、大きな言語モデルの能力を活用する。
論文 参考訳(メタデータ) (2023-12-18T09:13:41Z) - Query2doc: Query Expansion with Large Language Models [69.9707552694766]
提案手法はまず,大言語モデル (LLM) をプロンプトすることで擬似文書を生成する。
query2docは、アドホックIRデータセットでBM25のパフォーマンスを3%から15%向上させる。
また,本手法は,ドメイン内およびドメイン外の両方において,最先端の高密度検索に有効である。
論文 参考訳(メタデータ) (2023-03-14T07:27:30Z) - Generation-Augmented Query Expansion For Code Retrieval [51.20943646688115]
本稿では,次世代のクエリ拡張フレームワークを提案する。
人間の検索プロセスにインスパイアされた – 検索前に回答をスケッチする。
CodeSearchNetベンチマークで、最先端の新たな結果を得る。
論文 参考訳(メタデータ) (2022-12-20T23:49:37Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
本稿では,文書検索を大規模言語モデル生成器に置き換えることで,知識集約型タスクを解く新しい視点を提案する。
我々は,提案手法をgenRead (genRead) と呼び,まず大きな言語モデルに対して,与えられた質問に基づいて文脈文書を生成し,次に生成された文書を読み出して最終回答を生成する。
論文 参考訳(メタデータ) (2022-09-21T01:30:59Z) - Open-Domain Question Answering with Pre-Constructed Question Spaces [70.13619499853756]
オープンドメインの質問応答は、大量の文書の集合の中でユーザ生成した質問に対する回答を見つけるという課題を解決することを目的としている。
ソリューションには、レトリバーリーダーとナレッジグラフベースのアプローチの2つのファミリーがある。
本稿では,両家系と異なるリーダ・リトリバー構造を持つ新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-02T04:31:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。