論文の概要: CodeRAG-Bench: Can Retrieval Augment Code Generation?
- arxiv url: http://arxiv.org/abs/2406.14497v1
- Date: Thu, 20 Jun 2024 16:59:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 12:33:17.537398
- Title: CodeRAG-Bench: Can Retrieval Augment Code Generation?
- Title(参考訳): CodeRAG-Bench: 検索によるコード生成は可能か?
- Authors: Zora Zhiruo Wang, Akari Asai, Xinyan Velocity Yu, Frank F. Xu, Yiqing Xie, Graham Neubig, Daniel Fried,
- Abstract要約: 検索拡張生成を用いたコード生成の系統的,大規模な解析を行う。
まず、コード生成タスクの3つのカテゴリを含む総合的な評価ベンチマークであるCodeRAG-Benchをキュレートする。
CodeRAG-Bench上のトップパフォーマンスモデルについて、1つまたは複数のソースから検索したコンテキストを提供することにより検討する。
- 参考スコア(独自算出の注目度): 78.37076502395699
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: While language models (LMs) have proven remarkably adept at generating code, many programs are challenging for LMs to generate using their parametric knowledge alone. Providing external contexts such as library documentation can facilitate generating accurate and functional code. Despite the success of retrieval-augmented generation (RAG) in various text-oriented tasks, its potential for improving code generation remains under-explored. In this work, we conduct a systematic, large-scale analysis by asking: in what scenarios can retrieval benefit code generation models? and what challenges remain? We first curate a comprehensive evaluation benchmark, CodeRAG-Bench, encompassing three categories of code generation tasks, including basic programming, open-domain, and repository-level problems. We aggregate documents from five sources for models to retrieve contexts: competition solutions, online tutorials, library documentation, StackOverflow posts, and GitHub repositories. We examine top-performing models on CodeRAG-Bench by providing contexts retrieved from one or multiple sources. While notable gains are made in final code generation by retrieving high-quality contexts across various settings, our analysis reveals room for improvement -- current retrievers still struggle to fetch useful contexts especially with limited lexical overlap, and generators fail to improve with limited context lengths or abilities to integrate additional contexts. We hope CodeRAG-Bench serves as an effective testbed to encourage further development of advanced code-oriented RAG methods.
- Abstract(参考訳): 言語モデル(LM)は、コード生成に非常に適していることが証明されているが、多くのプログラムは、パラメトリック知識のみを用いて、LMが生成することを困難にしている。
ライブラリドキュメンテーションのような外部コンテキストを提供することで、正確で機能的なコードを生成することができる。
テキスト指向タスクにおける検索拡張生成(RAG)の成功にもかかわらず、コード生成を改善する可能性はまだ探索されていない。
どのようなシナリオでコード生成モデルに利益をもたらすことができるのか?
どんな課題が残っていますか?
まず、基本的なプログラミング、オープンドメイン、リポジトリレベルの問題を含むコード生成タスクの3つのカテゴリを含む総合的な評価ベンチマークであるCodeRAG-Benchをキュレートする。
コンペティションソリューション、オンラインチュートリアル、ライブラリドキュメンテーション、StackOverflowの投稿、GitHubリポジトリなどです。
CodeRAG-Bench上のトップパフォーマンスモデルについて、1つまたは複数のソースから検索したコンテキストを提供することにより検討する。
さまざまな設定にまたがって高品質なコンテキストを検索することで、最終的なコード生成において顕著な利益が得られますが、我々の分析では改善の余地が明らかになっています。
CodeRAG-Benchは、高度なコード指向RAGメソッドのさらなる開発を促進する効果的なテストベッドとして機能することを願っている。
関連論文リスト
- CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval [103.116634967815]
CodeXEmbedは400Mから7Bパラメータの大規模なコード埋め込みモデルのファミリーである。
我々の新しいトレーニングパイプラインは、複数のプログラミング言語を統合し、様々なコード関連タスクを共通の検索フレームワークに変換する。
私たちの7Bモデルは、コード検索において新しい最先端(SOTA)を設定し、以前の主要なモデルであるVoyage-CodeをCoIRベンチマークで20%以上上回っています。
論文 参考訳(メタデータ) (2024-11-19T16:54:45Z) - SWT-Bench: Testing and Validating Real-World Bug-Fixes with Code Agents [10.730852617039451]
ユーザ問題をテストケースに形式化するLLMベースのコードエージェントについて検討する。
我々は人気のあるGitHubリポジトリに基づいた新しいベンチマークを提案し、現実世界の問題、地味なバグフィックス、ゴールデンテストを含む。
コード修復用に設計されたコードエージェントは,テスト生成用に設計されたシステムの性能を上回っている。
論文 参考訳(メタデータ) (2024-06-18T14:54:37Z) - On the Impacts of Contexts on Repository-Level Code Generation [5.641402231731082]
リポジトリレベルのコード生成を評価するために設計された新しいベンチマークである textbfmethodnamews を提案する。
実行可能性、包括的なテストケース生成による機能的正当性、ファイル間のコンテキストの正確な利用という3つの重要な側面に注目します。
論文 参考訳(メタデータ) (2024-06-17T10:45:22Z) - Repoformer: Selective Retrieval for Repository-Level Code Completion [30.706277772743615]
検索強化生成(RAG)の最近の進歩は、リポジトリレベルのコード補完の新たな時代が始まった。
本稿では,不要な場合の検索を回避するため,選択的なRAGフレームワークを提案する。
我々のフレームワークは、異なる世代モデル、レトリバー、プログラミング言語に対応できることを示します。
論文 参考訳(メタデータ) (2024-03-15T06:59:43Z) - RepoAgent: An LLM-Powered Open-Source Framework for Repository-level
Code Documentation Generation [79.83270415843857]
コードドキュメンテーションを積極的に生成、保守、更新することを目的とした、大規模な言語モデルによるオープンソースフレームワークであるRepoAgentを紹介します。
RepoAgentは高品質なリポジトリレベルのドキュメントを生成するのに優れています。
論文 参考訳(メタデータ) (2024-02-26T15:39:52Z) - ARKS: Active Retrieval in Knowledge Soup for Code Generation [18.22108704150575]
本稿では,コードのための大規模言語モデルを一般化するための高度な戦略である,知識検索におけるActive Retrieval(ARKS)を紹介する。
我々は、クエリを反復的に洗練し、知識のスープを更新するアクティブな検索戦略を採用している。
ChatGPTとCodeLlamaの実験結果から,LDM上でのARKSの平均実行精度が大幅に向上した。
論文 参考訳(メタデータ) (2024-02-19T17:37:28Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - RepoCoder: Repository-Level Code Completion Through Iterative Retrieval
and Generation [96.75695811963242]
RepoCoderはリポジトリレベルのコード補完プロセスを合理化するフレームワークである。
類似性ベースのレトリバーと、事前訓練されたコード言語モデルが組み込まれている。
バニラ検索で拡張されたコード補完アプローチよりも一貫して優れています。
論文 参考訳(メタデータ) (2023-03-22T13:54:46Z) - Generation-Augmented Query Expansion For Code Retrieval [51.20943646688115]
本稿では,次世代のクエリ拡張フレームワークを提案する。
人間の検索プロセスにインスパイアされた – 検索前に回答をスケッチする。
CodeSearchNetベンチマークで、最先端の新たな結果を得る。
論文 参考訳(メタデータ) (2022-12-20T23:49:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。