ParGANDA: Making Synthetic Pedestrians A Reality For Object Detection
- URL: http://arxiv.org/abs/2307.11360v1
- Date: Fri, 21 Jul 2023 05:26:32 GMT
- Title: ParGANDA: Making Synthetic Pedestrians A Reality For Object Detection
- Authors: Daria Reshetova, Guanhang Wu, Marcel Puyat, Chunhui Gu, Huizhong Chen
- Abstract summary: We propose to use a Generative Adversarial Network (GAN) to close the gap between the real and synthetic data.
Our approach not only produces visually plausible samples but also does not require any labels of the real domain.
- Score: 2.7648976108201815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection is the key technique to a number of Computer Vision
applications, but it often requires large amounts of annotated data to achieve
decent results. Moreover, for pedestrian detection specifically, the collected
data might contain some personally identifiable information (PII), which is
highly restricted in many countries. This label intensive and privacy
concerning task has recently led to an increasing interest in training the
detection models using synthetically generated pedestrian datasets collected
with a photo-realistic video game engine. The engine is able to generate
unlimited amounts of data with precise and consistent annotations, which gives
potential for significant gains in the real-world applications. However, the
use of synthetic data for training introduces a synthetic-to-real domain shift
aggravating the final performance. To close the gap between the real and
synthetic data, we propose to use a Generative Adversarial Network (GAN), which
performsparameterized unpaired image-to-image translation to generate more
realistic images. The key benefit of using the GAN is its intrinsic preference
of low-level changes to geometric ones, which means annotations of a given
synthetic image remain accurate even after domain translation is performed thus
eliminating the need for labeling real data. We extensively experimented with
the proposed method using MOTSynth dataset to train and MOT17 and MOT20
detection datasets to test, with experimental results demonstrating the
effectiveness of this method. Our approach not only produces visually plausible
samples but also does not require any labels of the real domain thus making it
applicable to the variety of downstream tasks.
Related papers
- Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Image change detection with only a few samples [7.5780621370948635]
A major impediment of image change detection task is the lack of large annotated datasets covering a wide variety of scenes.
We propose using simple image processing methods for generating synthetic but informative datasets.
We then design an early fusion network based on object detection which could outperform the siamese neural network.
arXiv Detail & Related papers (2023-11-07T07:01:35Z) - Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances [76.34037366117234]
We introduce a new dataset called Robot Control Gestures (RoCoG-v2)
The dataset is composed of both real and synthetic videos from seven gesture classes.
We present results using state-of-the-art action recognition and domain adaptation algorithms.
arXiv Detail & Related papers (2023-03-17T23:23:55Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
Deep learning in computer vision has achieved great success with the price of large-scale labeled training data.
The uncontrollable data collection process produces non-IID training and test data, where undesired duplication may exist.
To circumvent them, an alternative is to generate synthetic data via 3D rendering with domain randomization.
arXiv Detail & Related papers (2023-03-16T09:03:52Z) - Synthetic Data for Object Classification in Industrial Applications [53.180678723280145]
In object classification, capturing a large number of images per object and in different conditions is not always possible.
This work explores the creation of artificial images using a game engine to cope with limited data in the training dataset.
arXiv Detail & Related papers (2022-12-09T11:43:04Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - Neural-Sim: Learning to Generate Training Data with NeRF [31.81496344354997]
We present the first fully differentiable synthetic data pipeline that uses Neural Radiance Fields (NeRFs) in a closed-loop with a target application's loss function.
Our approach generates data on-demand, with no human labor, to maximize accuracy for a target task.
arXiv Detail & Related papers (2022-07-22T22:48:33Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
We propose a method to generate artificial traffic-related training data for deep traffic light detectors.
This data is generated using basic non-realistic computer graphics to blend fake traffic scenes on top of arbitrary image backgrounds.
It also tackles the intrinsic data imbalance problem in traffic light datasets, caused mainly by the low amount of samples of the yellow state.
arXiv Detail & Related papers (2020-11-07T19:57:22Z) - Can Synthetic Data Improve Object Detection Results for Remote Sensing
Images? [15.466412729455874]
We propose the use of realistic synthetic data with a wide distribution to improve the performance of remote sensing image aircraft detection.
We randomly set the parameters during rendering, such as the size of the instance and the class of background images.
In order to make the synthetic images more realistic, we refine the synthetic images at the pixel level using CycleGAN with real unlabeled images.
arXiv Detail & Related papers (2020-06-09T02:23:22Z) - Virtual to Real adaptation of Pedestrian Detectors [9.432150710329607]
ViPeD is a new synthetically generated set of images collected with the graphical engine of the video game GTA V - Grand Theft Auto V.
We propose two different Domain Adaptation techniques suitable for the pedestrian detection task, but possibly applicable to general object detection.
Experiments show that the network trained with ViPeD can generalize over unseen real-world scenarios better than the detector trained over real-world data.
arXiv Detail & Related papers (2020-01-09T14:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.