An Analysis of Multi-Agent Reinforcement Learning for Decentralized
Inventory Control Systems
- URL: http://arxiv.org/abs/2307.11432v1
- Date: Fri, 21 Jul 2023 08:52:08 GMT
- Title: An Analysis of Multi-Agent Reinforcement Learning for Decentralized
Inventory Control Systems
- Authors: Marwan Mousa and Damien van de Berg and Niki Kotecha and Ehecatl
Antonio del Rio-Chanona and Max Mowbray
- Abstract summary: Most solutions to the inventory management problem assume a centralization of information incompatible with organisational constraints in real supply chain networks.
This paper proposes a decentralized data-driven solution to inventory management problems using multi-agent reinforcement learning.
Results show that using multi-agent proximal policy optimization with a centralized critic leads to performance very close to that of a centralized data-driven solution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most solutions to the inventory management problem assume a centralization of
information that is incompatible with organisational constraints in real supply
chain networks. The inventory management problem is a well-known planning
problem in operations research, concerned with finding the optimal re-order
policy for nodes in a supply chain. While many centralized solutions to the
problem exist, they are not applicable to real-world supply chains made up of
independent entities. The problem can however be naturally decomposed into
sub-problems, each associated with an independent entity, turning it into a
multi-agent system. Therefore, a decentralized data-driven solution to
inventory management problems using multi-agent reinforcement learning is
proposed where each entity is controlled by an agent. Three multi-agent
variations of the proximal policy optimization algorithm are investigated
through simulations of different supply chain networks and levels of
uncertainty. The centralized training decentralized execution framework is
deployed, which relies on offline centralization during simulation-based policy
identification, but enables decentralization when the policies are deployed
online to the real system. Results show that using multi-agent proximal policy
optimization with a centralized critic leads to performance very close to that
of a centralized data-driven solution and outperforms a distributed model-based
solution in most cases while respecting the information constraints of the
system.
Related papers
- Locally Interdependent Multi-Agent MDP: Theoretical Framework for Decentralized Agents with Dynamic Dependencies [6.015898117103069]
We analyze a decentralized model with dynamically varying dependencies called the Locally Interdependent Multi-Agent MDP.
Despite the intractability that general partially observable multi-agent systems suffer from, we propose three closed-form policies.
arXiv Detail & Related papers (2024-06-10T22:11:00Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - DePAint: A Decentralized Safe Multi-Agent Reinforcement Learning Algorithm considering Peak and Average Constraints [1.1549572298362787]
We propose a momentum-based decentralized gradient policy method, DePAint, to solve the problem.
This is the first privacy-preserving fully decentralized multi-agent reinforcement learning algorithm that considers both peak and average constraints.
arXiv Detail & Related papers (2023-10-22T16:36:03Z) - Identifying contributors to supply chain outcomes in a multi-echelon setting: a decentralised approach [47.00450933765504]
We propose the use of explainable artificial intelligence for decentralised computing of estimated contributions to a metric of interest.
This approach mitigates the need to convince supply chain actors to share data, as all computations occur in a decentralised manner.
Results demonstrate the effectiveness of our approach in detecting the source of quality variations compared to a centralised approach.
arXiv Detail & Related papers (2023-07-22T20:03:16Z) - Dealing with Non-Stationarity in Multi-Agent Reinforcement Learning via
Trust Region Decomposition [52.06086375833474]
Non-stationarity is one thorny issue in multi-agent reinforcement learning.
We introduce a $delta$-stationarity measurement to explicitly model the stationarity of a policy sequence.
We propose a trust region decomposition network based on message passing to estimate the joint policy divergence.
arXiv Detail & Related papers (2021-02-21T14:46:50Z) - Distributed Algorithms for Linearly-Solvable Optimal Control in
Networked Multi-Agent Systems [15.782670973813774]
A distributed framework is proposed to partition the optimal control problem of a networked MAS into several local optimal control problems.
For discrete-time systems, the joint Bellman equation of each subsystem is transformed into a system of linear equations.
For continuous-time systems, the joint optimality equation of each subsystem is converted into a linear partial differential equation.
arXiv Detail & Related papers (2021-02-18T01:31:17Z) - Decentralized Control with Graph Neural Networks [147.84766857793247]
We propose a novel framework using graph neural networks (GNNs) to learn decentralized controllers.
GNNs are well-suited for the task since they are naturally distributed architectures and exhibit good scalability and transferability properties.
The problems of flocking and multi-agent path planning are explored to illustrate the potential of GNNs in learning decentralized controllers.
arXiv Detail & Related papers (2020-12-29T18:59:14Z) - Lyapunov-Based Reinforcement Learning for Decentralized Multi-Agent
Control [3.3788926259119645]
In decentralized multi-agent control, systems are complex with unknown or highly uncertain dynamics.
Deep reinforcement learning (DRL) is promising to learn the controller/policy from data without the knowing system dynamics.
Existing multi-agent reinforcement learning (MARL) algorithms cannot ensure the closed-loop stability of a multi-agent system.
We propose a new MARL algorithm for decentralized multi-agent control with a stability guarantee.
arXiv Detail & Related papers (2020-09-20T06:11:42Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
We present a trainable online decentralized planning algorithm based on decentralized Monte Carlo Tree Search.
We show that deep learning and convolutional neural networks can be employed to produce accurate policy approximators.
arXiv Detail & Related papers (2020-03-19T13:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.