論文の概要: Attention Consistency Refined Masked Frequency Forgery Representation
for Generalizing Face Forgery Detection
- arxiv url: http://arxiv.org/abs/2307.11438v1
- Date: Fri, 21 Jul 2023 08:58:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-24 13:13:10.054176
- Title: Attention Consistency Refined Masked Frequency Forgery Representation
for Generalizing Face Forgery Detection
- Title(参考訳): 顔偽造検出の一般化のための注意一致修正マスク付き周波数偽造表現
- Authors: Decheng Liu, Tao Chen, Chunlei Peng, Nannan Wang, Ruimin Hu, Xinbo Gao
- Abstract要約: 既存の偽造検出方法は、未確認領域の真正性を決定する不満足な一般化能力に悩まされている。
ACMF(Attention Consistency Refined masked frequency forgery representation model)を提案する。
いくつかのパブリックフェイスフォージェリーデータセットの実験結果から,提案手法の性能は最先端の手法と比較して優れていることが示された。
- 参考スコア(独自算出の注目度): 96.539862328788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the successful development of deep image generation technology, visual
data forgery detection would play a more important role in social and economic
security. Existing forgery detection methods suffer from unsatisfactory
generalization ability to determine the authenticity in the unseen domain. In
this paper, we propose a novel Attention Consistency Refined masked frequency
forgery representation model toward generalizing face forgery detection
algorithm (ACMF). Most forgery technologies always bring in high-frequency
aware cues, which make it easy to distinguish source authenticity but difficult
to generalize to unseen artifact types. The masked frequency forgery
representation module is designed to explore robust forgery cues by randomly
discarding high-frequency information. In addition, we find that the forgery
attention map inconsistency through the detection network could affect the
generalizability. Thus, the forgery attention consistency is introduced to
force detectors to focus on similar attention regions for better generalization
ability. Experiment results on several public face forgery datasets
(FaceForensic++, DFD, Celeb-DF, and WDF datasets) demonstrate the superior
performance of the proposed method compared with the state-of-the-art methods.
- Abstract(参考訳): 深層画像生成技術の発展が成功したため、視覚データ偽造検出は社会と経済の安全においてより重要な役割を果たす。
既存の偽造検出方法は、未発見領域の真正性を決定するための不十分な一般化能力に苦しむ。
本稿では,顔偽造検出アルゴリズム(acmf)の一般化に向けて,新しい注意一貫性向上マスク偽造表現モデルを提案する。
ほとんどの偽造技術は、常に高い頻度で認識する手がかりをもたらし、ソースの信頼性を識別しやすくするが、目に見えないアーティファクトタイプへの一般化は困難である。
masked frequency forgery representation moduleは、高周波情報をランダムに捨てることで、堅牢なforgery cuesを探索するように設計されている。
さらに,検出ネットワークを介した偽造注意マップの不整合が一般化性に影響を及ぼすことを見出した。
これにより,検出者に類似した注意領域に着目して一般化能力を高めるために,偽造注意一貫性が導入された。
顔偽造データ(FaceForensic++,DFD,Celeb-DF,WDF)を用いた実験では,最先端の手法と比較して提案手法の優れた性能を示した。
関連論文リスト
- UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
高レベルの意味的特徴は摂動の影響を受けにくく、フォージェリー固有の人工物に限らないため、より強い一般化がある。
我々は、トランスフォーマーベースのビデオネットワークを活用する新しいディープフェイク検出フレームワークUniForensicsを導入し、顔の豊かな表現のためのメタファンクショナルな顔分類を行う。
論文 参考訳(メタデータ) (2024-07-26T20:51:54Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
顔の偽造生成技術は鮮明な顔を生み出し、セキュリティとプライバシーに対する世間の懸念を高めている。
顔偽造検出は偽の顔の識別に成功しているが、最近の研究では顔偽造検出は敵の例に対して非常に脆弱であることが示されている。
論文 参考訳(メタデータ) (2023-10-18T14:49:54Z) - Hierarchical Forgery Classifier On Multi-modality Face Forgery Clues [61.37306431455152]
我々は,HFC-MFFD (hierarchical Forgery for Multi-modality Face Forgery Detection) を提案する。
HFC-MFFDは、マルチモーダルシナリオにおけるフォージェリー認証を強化するために、堅牢なパッチベースのハイブリッド表現を学習する。
クラス不均衡問題を緩和し、さらに検出性能を高めるために、特定の階層的な顔偽造を提案する。
論文 参考訳(メタデータ) (2022-12-30T10:54:29Z) - SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for
Exposing Deepfakes [7.553507857251396]
本研究では,検出問題を(一級)アウト・オブ・ディストリビューション検出タスクとして形式化する,SeeABLEと呼ばれる新しいディープフェイク検出器を提案する。
SeeABLEは、新しい回帰ベースの有界コントラスト損失を使用して、乱れた顔を事前定義されたプロトタイプにプッシュする。
我々のモデルは競合する最先端の検出器よりも高い性能を示しながら、高度に一般化能力を示す。
論文 参考訳(メタデータ) (2022-11-21T09:38:30Z) - FedForgery: Generalized Face Forgery Detection with Residual Federated
Learning [87.746829550726]
既存の顔偽造検出方法は、取得した共有データや集中データを直接利用して訓練を行う。
顔偽造検出のための一般化された残留フェデレーション学習(FedForgery)を提案する。
顔偽造検出データセットを公開して行った実験は、提案したFedForgeryの優れた性能を証明している。
論文 参考訳(メタデータ) (2022-10-18T03:32:18Z) - MC-LCR: Multi-modal contrastive classification by locally correlated
representations for effective face forgery detection [11.124150983521158]
局所的関連表現を用いたマルチモーダルコントラスト分類法を提案する。
我々のMC-LCRは、空間領域と周波数領域の両方から真偽顔と偽顔の暗黙の局所的不一致を増幅することを目的としている。
我々は最先端の性能を達成し,本手法の堅牢性と一般化を実証する。
論文 参考訳(メタデータ) (2021-10-07T09:24:12Z) - Local Relation Learning for Face Forgery Detection [73.73130683091154]
局所的関係学習による顔の偽造検出の新たな視点を提案する。
具体的には,局所的な特徴間の類似度を測定するMPSM(Multi-scale Patch similarity Module)を提案する。
また、より包括的な局所特徴表現のために、RGBおよび周波数領域の情報を融合するRGB-Frequency Attention Module (RFAM)を提案する。
論文 参考訳(メタデータ) (2021-05-06T10:44:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。