論文の概要: Local Relation Learning for Face Forgery Detection
- arxiv url: http://arxiv.org/abs/2105.02577v1
- Date: Thu, 6 May 2021 10:44:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-07 13:23:08.658770
- Title: Local Relation Learning for Face Forgery Detection
- Title(参考訳): 顔偽造検出のための局所関係学習
- Authors: Shen Chen, Taiping Yao, Yang Chen, Shouhong Ding, Jilin Li, Rongrong
Ji
- Abstract要約: 局所的関係学習による顔の偽造検出の新たな視点を提案する。
具体的には,局所的な特徴間の類似度を測定するMPSM(Multi-scale Patch similarity Module)を提案する。
また、より包括的な局所特徴表現のために、RGBおよび周波数領域の情報を融合するRGB-Frequency Attention Module (RFAM)を提案する。
- 参考スコア(独自算出の注目度): 73.73130683091154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of facial manipulation techniques, face forgery
detection has received considerable attention in digital media forensics due to
security concerns. Most existing methods formulate face forgery detection as a
classification problem and utilize binary labels or manipulated region masks as
supervision. However, without considering the correlation between local
regions, these global supervisions are insufficient to learn a generalized
feature and prone to overfitting. To address this issue, we propose a novel
perspective of face forgery detection via local relation learning.
Specifically, we propose a Multi-scale Patch Similarity Module (MPSM), which
measures the similarity between features of local regions and forms a robust
and generalized similarity pattern. Moreover, we propose an RGB-Frequency
Attention Module (RFAM) to fuse information in both RGB and frequency domains
for more comprehensive local feature representation, which further improves the
reliability of the similarity pattern. Extensive experiments show that the
proposed method consistently outperforms the state-of-the-arts on widely-used
benchmarks. Furthermore, detailed visualization shows the robustness and
interpretability of our method.
- Abstract(参考訳): 顔操作技術の急速な発展に伴い、顔偽造検出はセキュリティ上の懸念からデジタルメディアの鑑識においてかなりの注目を集めている。
既存の手法の多くは偽造検出を分類問題として定式化し、二項ラベルや操作された領域マスクを監督として利用する。
しかし、地域間の相関を考慮せずに、これらのグローバルな監督は、一般化された特徴を学習し、過度に適合しがちである。
そこで本研究では,局所関係学習による顔偽造検出の新たな視点を提案する。
具体的には、局所的な特徴間の類似度を測定し、堅牢で一般化された類似度パターンを形成するMPSM(Multi-scale Patch similarity Module)を提案する。
さらに、より包括的な局所特徴表現のために、RGBと周波数領域の情報を融合するRGB-Frequency Attention Module (RFAM)を提案する。
広範な実験により,提案手法は広く使用されているベンチマークにおいて,最先端の手法を一貫して上回っていることが示された。
さらに,本手法の堅牢性と解釈可能性について,詳細な可視化を行った。
関連論文リスト
- Mixture-of-Noises Enhanced Forgery-Aware Predictor for Multi-Face Manipulation Detection and Localization [52.87635234206178]
本稿では,多面的操作検出と局所化に適したMoNFAPという新しいフレームワークを提案する。
このフレームワークには2つの新しいモジュールが含まれている: Forgery-aware Unified Predictor (FUP) Module と Mixture-of-Noises Module (MNM)。
論文 参考訳(メタデータ) (2024-08-05T08:35:59Z) - Exploiting Facial Relationships and Feature Aggregation for Multi-Face
Forgery Detection [21.976412231332798]
既存の方法は、主に単面操作検出に集中しており、より複雑で現実的な多面フォージェリーの領域は、比較的探索されていないままである。
本稿では,多面フォージェリ検出に適した新しいフレームワークを提案し,現状の研究において重要なギャップを埋めている。
提案手法が多面フォージェリ検出シナリオにおける最先端性能を実現することを示すために,2つの公開多面フォージェリデータセットを用いた実験結果を得た。
論文 参考訳(メタデータ) (2023-10-07T15:09:18Z) - Attention Consistency Refined Masked Frequency Forgery Representation
for Generalizing Face Forgery Detection [96.539862328788]
既存の偽造検出方法は、未確認領域の真正性を決定する不満足な一般化能力に悩まされている。
ACMF(Attention Consistency Refined masked frequency forgery representation model)を提案する。
いくつかのパブリックフェイスフォージェリーデータセットの実験結果から,提案手法の性能は最先端の手法と比較して優れていることが示された。
論文 参考訳(メタデータ) (2023-07-21T08:58:49Z) - Detect Any Deepfakes: Segment Anything Meets Face Forgery Detection and
Localization [30.317619885984005]
本稿では,視覚的セグメンテーション基盤モデル,すなわちセグメンテーションモデル(SAM)をフォージェリ検出とローカライゼーションの対面に導入する。
SAMに基づいて,Multiscale Adapterを用いたDADFフレームワークを提案する。
提案するフレームワークは、エンドツーエンドのフォージェリーローカライゼーションと検出最適化をシームレスに統合する。
論文 参考訳(メタデータ) (2023-06-29T16:25:04Z) - Multi-spectral Class Center Network for Face Manipulation Detection and Localization [52.569170436393165]
顔の操作検出と局所化のための新しいマルチスペクトル・クラス・センター・ネットワーク(MSCCNet)を提案する。
周波数帯域の異なる特徴に基づき、MSCCモジュールはマルチスペクトルクラスセンターを収集し、ピクセル対クラス関係を計算する。
多スペクトルクラスレベルの表現を適用することで、偽画像の操作された領域に敏感な視覚概念の意味情報を抑えることができる。
論文 参考訳(メタデータ) (2023-05-18T08:09:20Z) - Hierarchical Forgery Classifier On Multi-modality Face Forgery Clues [61.37306431455152]
我々は,HFC-MFFD (hierarchical Forgery for Multi-modality Face Forgery Detection) を提案する。
HFC-MFFDは、マルチモーダルシナリオにおけるフォージェリー認証を強化するために、堅牢なパッチベースのハイブリッド表現を学習する。
クラス不均衡問題を緩和し、さらに検出性能を高めるために、特定の階層的な顔偽造を提案する。
論文 参考訳(メタデータ) (2022-12-30T10:54:29Z) - Cross-Domain Local Characteristic Enhanced Deepfake Video Detection [18.430287055542315]
ディープフェイク検出はセキュリティ上の懸念から注目を集めている。
多くの検出器は、目に見えない操作を検出する際に正確な結果を得ることができない。
そこで我々は,より一般的なディープフェイクビデオ検出のための新しいパイプラインであるクロスドメインローカルフォレスティクスを提案する。
論文 参考訳(メタデータ) (2022-11-07T07:44:09Z) - MC-LCR: Multi-modal contrastive classification by locally correlated
representations for effective face forgery detection [11.124150983521158]
局所的関連表現を用いたマルチモーダルコントラスト分類法を提案する。
我々のMC-LCRは、空間領域と周波数領域の両方から真偽顔と偽顔の暗黙の局所的不一致を増幅することを目的としている。
我々は最先端の性能を達成し,本手法の堅牢性と一般化を実証する。
論文 参考訳(メタデータ) (2021-10-07T09:24:12Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
現在のCNNベースの検出器は、メソッド固有の色テクスチャに過度に適合するため、一般化に失敗する傾向にある。
フェースフォージェリ検出に高周波雑音を用いることを提案する。
1つは、複数のスケールで高周波ノイズを抽出するマルチスケールの高周波特徴抽出モジュールである。
2つ目は、低レベルRGB特徴抽出器を導く残差誘導空間注意モジュールで、新しい視点からフォージェリートレースにもっと集中する。
論文 参考訳(メタデータ) (2021-03-23T08:19:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。