Zero-touch realization of Pervasive Artificial Intelligence-as-a-service
in 6G networks
- URL: http://arxiv.org/abs/2307.11468v1
- Date: Fri, 21 Jul 2023 10:02:24 GMT
- Title: Zero-touch realization of Pervasive Artificial Intelligence-as-a-service
in 6G networks
- Authors: Emna Baccour and Mhd Saria Allahham and Aiman Erbad and Amr Mohamed
and Ahmed Refaey Hussein and Mounir Hamdi
- Abstract summary: We introduce a novel platform architecture to deploy a zero-touch PAI-as-a-Service (PAI) in 6G networks supported by a blockchain-based smart system.
We present a proof of concept where we evaluate the ability of our proposed system to self-optimize and self-adapt to the dynamics of 6G networks.
- Score: 8.500820283596774
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The vision of the upcoming 6G technologies, characterized by ultra-dense
network, low latency, and fast data rate is to support Pervasive AI (PAI) using
zero-touch solutions enabling self-X (e.g., self-configuration,
self-monitoring, and self-healing) services. However, the research on 6G is
still in its infancy, and only the first steps have been taken to conceptualize
its design, investigate its implementation, and plan for use cases. Toward this
end, academia and industry communities have gradually shifted from theoretical
studies of AI distribution to real-world deployment and standardization. Still,
designing an end-to-end framework that systematizes the AI distribution by
allowing easier access to the service using a third-party application assisted
by a zero-touch service provisioning has not been well explored. In this
context, we introduce a novel platform architecture to deploy a zero-touch
PAI-as-a-Service (PAIaaS) in 6G networks supported by a blockchain-based smart
system. This platform aims to standardize the pervasive AI at all levels of the
architecture and unify the interfaces in order to facilitate the service
deployment across application and infrastructure domains, relieve the users
worries about cost, security, and resource allocation, and at the same time,
respect the 6G stringent performance requirements. As a proof of concept, we
present a Federated Learning-as-a-service use case where we evaluate the
ability of our proposed system to self-optimize and self-adapt to the dynamics
of 6G networks in addition to minimizing the users' perceived costs.
Related papers
- Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI-generated content can organize collaborative Mobile AIGC Service Providers (MASPs) at network edges to provide ubiquitous and customized content for resource-constrained users.
Such a paradigm faces two significant challenges: 1) raw prompts often lead to poor generation quality due to users' lack of experience with specific AIGC models, and 2) static service provisioning fails to efficiently utilize computational and communication resources.
We develop an interactive prompt engineering mechanism that leverages a Large Language Model (LLM) to generate customized prompt corpora and employs Inverse Reinforcement Learning (IRL) for policy imitation.
arXiv Detail & Related papers (2025-02-17T03:05:20Z) - Towards Cognitive Service Delivery on B5G through AIaaS Architecture [0.16070833439280313]
The transition from 4G to 5G has substantial implications for AI in consolidating a network geared towards business verticals.
This paper proposes a framework for evolving NWDAF that presents the interfaces necessary to further empower the core network with AI capabilities B5G and 6G.
arXiv Detail & Related papers (2024-12-23T20:30:29Z) - Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities [148.601430677814]
This paper presents a comprehensive overview of AI and communication for 6G networks.
We first review the driving factors behind incorporating AI into wireless communications, as well as the vision for the convergence of AI and 6G.
The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks.
arXiv Detail & Related papers (2024-12-19T05:36:34Z) - A Learning-based Incentive Mechanism for Mobile AIGC Service in Decentralized Internet of Vehicles [49.86094523878003]
We propose a decentralized incentive mechanism for mobile AIGC service allocation.
We employ multi-agent deep reinforcement learning to find the balance between the supply of AIGC services on RSUs and user demand for services within the IoV context.
arXiv Detail & Related papers (2024-03-29T12:46:07Z) - Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration [56.330705072736166]
We propose a 6G native AI framework based on foundation models, provide a customization approach for intent-aware PFM, and outline a novel cloud-edge-end collaboration paradigm.
As a practical use case, we apply this framework for orchestration, achieving the maximum sum rate within a wireless communication system.
arXiv Detail & Related papers (2023-10-26T15:19:40Z) - Optimization Design for Federated Learning in Heterogeneous 6G Networks [27.273745760946962]
Federated learning (FL) is anticipated to be a key enabler for achieving ubiquitous AI in 6G networks.
There are several system and statistical heterogeneity challenges for effective and efficient FL implementation in 6G networks.
In this article, we investigate the optimization approaches that can effectively address the challenges.
arXiv Detail & Related papers (2023-03-15T02:18:21Z) - In-situ Model Downloading to Realize Versatile Edge AI in 6G Mobile
Networks [61.416494781759326]
In-situ model downloading aims to achieve transparent and real-time replacement of on-device AI models by downloading from an AI library in the network.
A key component of the presented framework is a set of techniques that dynamically compress a downloaded model at the depth-level, parameter-level, or bit-level.
We propose a 6G network architecture customized for deploying in-situ model downloading with the key feature of a three-tier (edge, local, and central) AI library.
arXiv Detail & Related papers (2022-10-07T13:41:15Z) - Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and
Applications [39.223546118441476]
6G will revolutionize the evolution of wireless from "connected things" to "connected intelligence"
Deep learning and big data analytics based AI systems require tremendous computation and communication resources.
edge AI stands out as a disruptive technology for 6G to seamlessly integrate sensing, communication, computation, and intelligence.
arXiv Detail & Related papers (2021-11-24T11:47:16Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
Edge intelligence, also called edge-native artificial intelligence (AI), is an emerging technological framework focusing on seamless integration of AI, communication networks, and mobile edge computing.
In this article, we identify the key requirements and challenges of edge-native AI in 6G.
arXiv Detail & Related papers (2020-10-01T02:16:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.