論文の概要: Semi-supervised Underwater Image Enhancement Using A Physics-Aware Triple-Stream Network
- arxiv url: http://arxiv.org/abs/2307.11470v3
- Date: Mon, 25 Nov 2024 08:53:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:15:48.874054
- Title: Semi-supervised Underwater Image Enhancement Using A Physics-Aware Triple-Stream Network
- Title(参考訳): 物理対応トリプルストリームネットワークを用いた半教師付き水中画像強調
- Authors: Hao Qi, Shixuan Xu, Xinghui Dong,
- Abstract要約: 我々は、物理に基づく画像形成モデル(IFM)と深層学習技術の両方を水中画像強調(UIE)に活用する。
PATS-UIENetは、直接信号伝送推定水蒸気(D-Stream)、後方信号伝送推定水蒸気(B-Stream)、アンビエント光推定水蒸気(A-Stream)からなる。
また、ラベル付き画像とラベルなし画像の両方を利用して、IFMにインスパイアされた半教師付き学習フレームワークを採用し、不十分なデータの問題に対処する。
- 参考スコア(独自算出の注目度): 6.7932860553262415
- License:
- Abstract: Underwater images normally suffer from degradation due to the transmission medium of water bodies. Both traditional prior-based approaches and deep learning-based methods have been used to address this problem. However, the inflexible assumption of the former often impairs their effectiveness in handling diverse underwater scenes, while the generalization of the latter to unseen images is usually weakened by insufficient data. In this study, we leverage both the physics-based Image Formation Model (IFM) and deep learning techniques for Underwater Image Enhancement (UIE). To this end, we propose a novel Physics-Aware Triple-Stream Underwater Image Enhancement Network, i.e., PATS-UIENet, which comprises a Direct Signal Transmission Estimation Steam (D-Stream), a Backscatter Signal Transmission Estimation Steam (B-Stream) and an Ambient Light Estimation Stream (A-Stream). This network fulfills the UIE task by explicitly estimating the degradation parameters of a revised IFM. We also adopt an IFM-inspired semi-supervised learning framework, which exploits both the labeled and unlabeled images, to address the issue of insufficient data. To our knowledge, such a physics-aware deep network and the IFM-inspired semi-supervised learning framework have not been used for the UIE task before. Our method performs better than, or at least comparably to, sixteen baselines across six testing sets in the degradation estimation and UIE tasks. These promising results should be due to the fact that the proposed method can not only model the degradation but also learn the characteristics of diverse underwater scenes.
- Abstract(参考訳): 水中画像は通常、水域の透過媒質による劣化に悩まされる。
従来の事前ベースアプローチとディープラーニングベースの手法の両方がこの問題に対処するために使われてきた。
しかしながら、前者の非フレキシブルな仮定は、多様な水中シーンを扱う上での有効性を損なうことが多いが、後者のイメージの一般化は、不十分なデータによって弱まることが多い。
本研究では,物理に基づく画像形成モデル(IFM)と深層学習技術(UIE)の両方を活用する。
そこで本研究では, 直接信号伝送推定水蒸気(D-Stream), バックスキャッタ信号伝送推定水蒸気(B-Stream), アンビエント光推定水蒸気(A-Stream)からなる, PATS-UIENetを新たに提案する。
このネットワークは、修正IFMの劣化パラメータを明示的に推定することでUIEタスクを満たす。
また、ラベル付き画像とラベルなし画像の両方を利用して、IFMにインスパイアされた半教師付き学習フレームワークを採用し、不十分なデータの問題に対処する。
物理を意識した深層ネットワークとIMMにインスパイアされた半教師付き学習フレームワークは、これまでUIEタスクに使用されていなかった。
本手法は, 劣化推定およびUIEタスクにおいて, 6つのテストセットにまたがる16のベースラインよりも優れた性能を示す。
これらの有望な結果は, 提案手法が劣化をモデル化できるだけでなく, 多様な水中シーンの特徴を学習できるためと考えられる。
関連論文リスト
- FAFA: Frequency-Aware Flow-Aided Self-Supervision for Underwater Object Pose Estimation [65.01601309903971]
無人水中車両(UUV)の6次元ポーズ推定のための周波数認識フロー支援フレームワークであるFAFAを紹介する。
我々のフレームワークは、3DモデルとRGB画像のみに依存しており、実際のポーズアノテーションや奥行きのような非モダリティデータの必要性を軽減しています。
本研究では,一般的な水中オブジェクトポーズベンチマークにおけるFAFAの有効性を評価し,最先端手法と比較して顕著な性能向上を示した。
論文 参考訳(メタデータ) (2024-09-25T03:54:01Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - An Efficient Detection and Control System for Underwater Docking using
Machine Learning and Realistic Simulation: A Comprehensive Approach [5.039813366558306]
この研究は、水中ドッキングの検出と分類を行うために異なるディープラーニングアーキテクチャと比較する。
GAN(Generative Adversarial Network)は画像から画像への変換に用いられ、ガゼボのシミュレーション画像を水中画像に変換する。
その結果,水中の潮流によらず,高濁度シナリオでは20%の改善が見られた。
論文 参考訳(メタデータ) (2023-11-02T18:10:20Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
本稿では、検出器フレンドリーな画像から、転送可能な事前知識を求める。
これは、検出器フレンドリー(DFUI)と水中画像の高度に劣化した領域が、特徴分布のギャップがあることを統計的に観察したものである。
高速かつパラメータの少ない本手法は変圧器型検出器よりも優れた性能を保っている。
論文 参考訳(メタデータ) (2023-08-24T12:32:46Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
鮮明で視覚的に快適な画像を得る方法は、人々の共通の関心事となっている。
水中画像強調(UIE)の課題も、時間とともに現れた。
本稿では,UIE のための物理モデル誘導型 GAN モデルを提案する。
我々のPUGANは質的および定量的な測定値において最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-06-15T07:41:12Z) - Unpaired Overwater Image Defogging Using Prior Map Guided CycleGAN [60.257791714663725]
オーバーウォーターシーンで画像をデフォグするための先行マップガイドサイクロン (PG-CycleGAN) を提案する。
提案手法は,最先端の教師付き,半教師付き,非教師付きデグジングアプローチより優れている。
論文 参考訳(メタデータ) (2022-12-23T03:00:28Z) - Adaptive Uncertainty Distribution in Deep Learning for Unsupervised
Underwater Image Enhancement [1.9249287163937976]
ディープラーニングベースの水中画像強化における大きな課題の1つは、高品質なトレーニングデータの可用性の制限である。
本研究では、条件付き変分オートエンコーダ(cVAE)を用いて、深層学習モデルのトレーニングを行う、新しい教師なし水中画像強調フレームワークを提案する。
提案手法は, 定量化と定性化の両面において, 他の最先端手法と比較して, 競争性能が向上することを示す。
論文 参考訳(メタデータ) (2022-12-18T01:07:20Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
本稿では,教師なし画像から画像への翻訳フレームワークに基づく水中画像復元手法を提案する。
提案手法は, 生画像と復元画像の相互情報を最大化するために, コントラスト学習と生成敵ネットワークを利用した。
論文 参考訳(メタデータ) (2021-06-20T16:06:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。