論文の概要: FAFA: Frequency-Aware Flow-Aided Self-Supervision for Underwater Object Pose Estimation
- arxiv url: http://arxiv.org/abs/2409.16600v1
- Date: Wed, 25 Sep 2024 03:54:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 05:45:19.465350
- Title: FAFA: Frequency-Aware Flow-Aided Self-Supervision for Underwater Object Pose Estimation
- Title(参考訳): FAFA:水中物体電位推定のための周波数対応フロー支援セルフスーパービジョン
- Authors: Jingyi Tang, Gu Wang, Zeyu Chen, Shengquan Li, Xiu Li, Xiangyang Ji,
- Abstract要約: 無人水中車両(UUV)の6次元ポーズ推定のための周波数認識フロー支援フレームワークであるFAFAを紹介する。
我々のフレームワークは、3DモデルとRGB画像のみに依存しており、実際のポーズアノテーションや奥行きのような非モダリティデータの必要性を軽減しています。
本研究では,一般的な水中オブジェクトポーズベンチマークにおけるFAFAの有効性を評価し,最先端手法と比較して顕著な性能向上を示した。
- 参考スコア(独自算出の注目度): 65.01601309903971
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Although methods for estimating the pose of objects in indoor scenes have achieved great success, the pose estimation of underwater objects remains challenging due to difficulties brought by the complex underwater environment, such as degraded illumination, blurring, and the substantial cost of obtaining real annotations. In response, we introduce FAFA, a Frequency-Aware Flow-Aided self-supervised framework for 6D pose estimation of unmanned underwater vehicles (UUVs). Essentially, we first train a frequency-aware flow-based pose estimator on synthetic data, where an FFT-based augmentation approach is proposed to facilitate the network in capturing domain-invariant features and target domain styles from a frequency perspective. Further, we perform self-supervised training by enforcing flow-aided multi-level consistencies to adapt it to the real-world underwater environment. Our framework relies solely on the 3D model and RGB images, alleviating the need for any real pose annotations or other-modality data like depths. We evaluate the effectiveness of FAFA on common underwater object pose benchmarks and showcase significant performance improvements compared to state-of-the-art methods. Code is available at github.com/tjy0703/FAFA.
- Abstract(参考訳): 屋内シーンにおける物体のポーズを推定する方法は大きな成功を収めているが, 劣化照明, ぼやけ, 実際のアノテーションを得るためのかなりのコストなど, 複雑な水中環境がもたらす困難さから, 水中物体のポーズ推定はいまだに困難である。
本研究では,無人水中車両(UUV)の6次元ポーズ推定のための周波数認識フロー支援フレームワークであるFAFAを紹介する。
そこでFFTに基づく拡張手法を提案し、周波数視点からドメイン不変の特徴や対象ドメインスタイルを抽出するネットワークを容易にする。
さらに,実環境の水中環境に適応するために,フロー支援型多層成分を強制して自己指導訓練を行う。
我々のフレームワークは、3DモデルとRGB画像のみに依存しており、実際のポーズアノテーションや奥行きのような非モダリティデータの必要性を軽減しています。
本研究では,一般的な水中オブジェクトポーズベンチマークにおけるFAFAの有効性を評価し,最先端手法と比較して顕著な性能向上を示した。
コードはgithub.com/tjy0703/FAFAで入手できる。
関連論文リスト
- Diff9D: Diffusion-Based Domain-Generalized Category-Level 9-DoF Object Pose Estimation [68.81887041766373]
ドメイン一般化9-DoFオブジェクトポーズ推定のための拡散に基づくパラダイムを提案する。
本研究では,9-DoFオブジェクトのポーズ推定を生成的観点から再定義する効果的な拡散モデルを提案する。
提案手法は,最先端の領域一般化性能を実現する。
論文 参考訳(メタデータ) (2025-02-04T17:46:34Z) - Sonar-based Deep Learning in Underwater Robotics: Overview, Robustness and Challenges [0.46873264197900916]
水中でのソナーの使用は、限られた訓練データと固有のノイズが特徴であり、頑丈さをモデル化する上での課題となっている。
本稿では,分類,物体検出,セグメンテーション,SLAMなどのソナーベース認知タスクモデルについて検討する。
ソナーベースの最先端データセット、シミュレータ、ニューラルネットワーク検証、アウト・オブ・ディストリビューション、敵攻撃などの堅牢性メソッドを体系化する。
論文 参考訳(メタデータ) (2024-12-16T15:03:08Z) - UW-SDF: Exploiting Hybrid Geometric Priors for Neural SDF Reconstruction from Underwater Multi-view Monocular Images [63.32490897641344]
ニューラルSDFに基づく多視点水中画像から対象物を再構成するフレームワークを提案する。
再建過程を最適化するためのハイブリッドな幾何学的先行手法を導入し、神経SDF再建の質と効率を著しく向上させる。
論文 参考訳(メタデータ) (2024-10-10T16:33:56Z) - A Sonar-based AUV Positioning System for Underwater Environments with Low Infrastructure Density [2.423370951696279]
本研究では,人為的資産の分散分布を考慮したAUV(Autonomous Underwater Vehicles)のための,新しいリアルタイムソナーベースグローバル位置決めアルゴリズムを提案する。
実水中植物に類似した模擬環境下での予備実験は有望な結果をもたらした。
論文 参考訳(メタデータ) (2024-05-03T09:53:28Z) - ADOD: Adaptive Domain-Aware Object Detection with Residual Attention for
Underwater Environments [1.2624532490634643]
本研究では,水中物体検出における領域一般化のための新しいアプローチであるADODを提案する。
本手法は, 様々な水中環境下での堅牢性を確保するため, 多様な領域にまたがってモデルを一般化する能力を高める。
論文 参考訳(メタデータ) (2023-12-11T19:20:56Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
鮮明で視覚的に快適な画像を得る方法は、人々の共通の関心事となっている。
水中画像強調(UIE)の課題も、時間とともに現れた。
本稿では,UIE のための物理モデル誘導型 GAN モデルを提案する。
我々のPUGANは質的および定量的な測定値において最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-06-15T07:41:12Z) - Fully Self-Supervised Depth Estimation from Defocus Clue [79.63579768496159]
スパース焦点スタックから深度を純粋に推定する自己教師型フレームワークを提案する。
筆者らのフレームワークは,深度とAIF画像の接地構造の必要性を回避し,より優れた予測を得られることを示す。
論文 参考訳(メタデータ) (2023-03-19T19:59:48Z) - Model-Based Underwater 6D Pose Estimation from RGB [1.9160624126555885]
本研究では,2次元物体検出を応用して,異なる水中シナリオにおける6次元ポーズ推定を確実に計算する手法を提案する。
すべてのオブジェクトとシーンは、オブジェクト検出とポーズ推定のためのアノテーションを含むオープンソースのデータセットで利用可能である。
論文 参考訳(メタデータ) (2023-02-14T04:27:03Z) - SVAM: Saliency-guided Visual Attention Modeling by Autonomous Underwater
Robots [16.242924916178282]
本稿では,自律型水中ロボットの視覚的注意モデル(SVAM)に対する総合的なアプローチを提案する。
提案するSVAM-Netは,様々なスケールの深部視覚的特徴を統合し,自然水中画像に有効なSOD(Salient Object Detection)を実現する。
論文 参考訳(メタデータ) (2020-11-12T08:17:21Z) - Leveraging Photometric Consistency over Time for Sparsely Supervised
Hand-Object Reconstruction [118.21363599332493]
本稿では,ビデオ中のフレームの粗いサブセットに対してのみアノテーションが利用できる場合に,時間とともに光度整合性を活用する手法を提案する。
本モデルでは,ポーズを推定することにより,手や物体を3Dで共同で再構成するカラーイメージをエンドツーエンドに訓練する。
提案手法は,3次元手動画像再構成の精度向上に有効であることを示す。
論文 参考訳(メタデータ) (2020-04-28T12:03:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。