Adaptive ResNet Architecture for Distributed Inference in
Resource-Constrained IoT Systems
- URL: http://arxiv.org/abs/2307.11499v1
- Date: Fri, 21 Jul 2023 11:07:21 GMT
- Title: Adaptive ResNet Architecture for Distributed Inference in
Resource-Constrained IoT Systems
- Authors: Fazeela Mazhar Khan and Emna Baccour and Aiman Erbad and Mounir Hamdi
- Abstract summary: This paper presents an empirical study that identifies the connections in ResNet that can be dropped without significantly impacting the model's performance.
Our experiments demonstrate that an adaptive ResNet architecture can reduce shared data, energy consumption, and latency throughout the distribution.
- Score: 7.26437825413781
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As deep neural networks continue to expand and become more complex, most edge
devices are unable to handle their extensive processing requirements.
Therefore, the concept of distributed inference is essential to distribute the
neural network among a cluster of nodes. However, distribution may lead to
additional energy consumption and dependency among devices that suffer from
unstable transmission rates. Unstable transmission rates harm real-time
performance of IoT devices causing low latency, high energy usage, and
potential failures. Hence, for dynamic systems, it is necessary to have a
resilient DNN with an adaptive architecture that can downsize as per the
available resources. This paper presents an empirical study that identifies the
connections in ResNet that can be dropped without significantly impacting the
model's performance to enable distribution in case of resource shortage. Based
on the results, a multi-objective optimization problem is formulated to
minimize latency and maximize accuracy as per available resources. Our
experiments demonstrate that an adaptive ResNet architecture can reduce shared
data, energy consumption, and latency throughout the distribution while
maintaining high accuracy.
Related papers
- Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
In this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL)
We propose an innovative PSL framework, namely, efficient parallel split learning (EPSL) to accelerate model training.
We show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy.
arXiv Detail & Related papers (2023-03-26T16:09:48Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
We introduce a novel approach to deploy large-scale Deep Neural Networks on constrained resources.
The method speeds up inference time and aims to reduce memory demand and power consumption.
arXiv Detail & Related papers (2022-12-25T15:40:05Z) - Network Aware Compute and Memory Allocation in Optically Composable Data
Centres with Deep Reinforcement Learning and Graph Neural Networks [0.0]
Resource-disaggregated data centre architectures promise a means of pooling resources remotely within data centres.
We show how this can be done using an optically switched circuit circuit backbone in the data centre network (DCN)
We show how emphdeep reinforcement learning can be used to learn effective emphnetwork-aware and emphtopologically-scalable allocation policies end-to-end.
arXiv Detail & Related papers (2022-10-26T09:46:50Z) - DISTREAL: Distributed Resource-Aware Learning in Heterogeneous Systems [2.1506382989223782]
We study the problem of distributed training of neural networks (NNs) on devices with heterogeneous, limited, and time-varying availability of computational resources.
We present an adaptive, resource-aware, on-device learning mechanism, DISTREAL, which is able to fully and efficiently utilize the available resources.
arXiv Detail & Related papers (2021-12-16T10:15:31Z) - Communication-Efficient Separable Neural Network for Distributed
Inference on Edge Devices [2.28438857884398]
We propose a novel method of exploiting model parallelism to separate a neural network for distributed inferences.
Under proper specifications of devices and configurations of models, our experiments show that the inference of large neural networks on edge clusters can be distributed and accelerated.
arXiv Detail & Related papers (2021-11-03T19:30:28Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Distribution-sensitive Information Retention for Accurate Binary Neural
Network [49.971345958676196]
We present a novel Distribution-sensitive Information Retention Network (DIR-Net) to retain the information of the forward activations and backward gradients.
Our DIR-Net consistently outperforms the SOTA binarization approaches under mainstream and compact architectures.
We conduct our DIR-Net on real-world resource-limited devices which achieves 11.1 times storage saving and 5.4 times speedup.
arXiv Detail & Related papers (2021-09-25T10:59:39Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z) - Deep Learning for Radio Resource Allocation with Diverse
Quality-of-Service Requirements in 5G [53.23237216769839]
We develop a deep learning framework to approximate the optimal resource allocation policy for base stations.
We find that a fully-connected neural network (NN) cannot fully guarantee the requirements due to the approximation errors and quantization errors of the numbers of subcarriers.
Considering that the distribution of wireless channels and the types of services in the wireless networks are non-stationary, we apply deep transfer learning to update NNs in non-stationary wireless networks.
arXiv Detail & Related papers (2020-03-29T04:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.