論文の概要: General regularization in covariate shift adaptation
- arxiv url: http://arxiv.org/abs/2307.11503v1
- Date: Fri, 21 Jul 2023 11:19:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-24 12:42:31.409179
- Title: General regularization in covariate shift adaptation
- Title(参考訳): 共変量シフト適応における一般正規化
- Authors: Duc Hoan Nguyen and Sergei V. Pereverzyev and Werner Zellinger
- Abstract要約: データ分布の違いを伴わない標準教師付き学習と同等の精度を達成するために必要なサンプルの量は、最先端の分析によって証明されたものよりも少ないことを示す。
- 参考スコア(独自算出の注目度): 1.5469452301122175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sample reweighting is one of the most widely used methods for correcting the
error of least squares learning algorithms in reproducing kernel Hilbert spaces
(RKHS), that is caused by future data distributions that are different from the
training data distribution. In practical situations, the sample weights are
determined by values of the estimated Radon-Nikod\'ym derivative, of the future
data distribution w.r.t.~the training data distribution. In this work, we
review known error bounds for reweighted kernel regression in RKHS and obtain,
by combination, novel results. We show under weak smoothness conditions, that
the amount of samples, needed to achieve the same order of accuracy as in the
standard supervised learning without differences in data distributions, is
smaller than proven by state-of-the-art analyses.
- Abstract(参考訳): サンプル再重み付けは、トレーニングデータ分布とは異なる将来のデータ分布に起因するカーネル・ヒルベルト空間(RKHS)における最小二乗学習アルゴリズムの誤差を修正する最も広く使われている方法の1つである。
実際の状況では、サンプル重量は、将来のデータ分布w.r.t.~のトレーニングデータ分布の推定ラドン-ニコド-'ym誘導体の値によって決定される。
本稿では、RKHSにおける再重み付きカーネル回帰の既知のエラー境界をレビューし、組み合わせて新しい結果を得る。
弱平滑性条件下では,データ分布の差を伴わない標準教師あり学習と同等の精度を達成するために必要なサンプル量は,最先端分析によって証明されるよりも小さい。
関連論文リスト
- Effect of Random Learning Rate: Theoretical Analysis of SGD Dynamics in Non-Convex Optimization via Stationary Distribution [6.144680854063938]
本研究では,その収束特性を明らかにするために,ランダムな学習率を持つ勾配降下(SGD)の変種を考察する。
ポアソンSGDによって更新されたパラメータの分布は、弱い仮定の下で定常分布に収束することを示した。
論文 参考訳(メタデータ) (2024-06-23T06:52:33Z) - Symmetric Q-learning: Reducing Skewness of Bellman Error in Online
Reinforcement Learning [55.75959755058356]
深層強化学習では、状態や行動の質を評価するために、価値関数を推定することが不可欠である。
最近の研究では、値関数を訓練する際の誤差分布はベルマン作用素の特性のためにしばしば歪むことが示唆されている。
そこで我々は,ゼロ平均分布から発生する合成ノイズを目標値に加え,ガウス誤差分布を生成するSymmetric Q-learning法を提案する。
論文 参考訳(メタデータ) (2024-03-12T14:49:19Z) - Learning to Re-weight Examples with Optimal Transport for Imbalanced
Classification [74.62203971625173]
不均衡データは、ディープラーニングに基づく分類モデルに課題をもたらす。
不均衡なデータを扱うための最も広く使われているアプローチの1つは、再重み付けである。
本稿では,分布の観点からの最適輸送(OT)に基づく新しい再重み付け手法を提案する。
論文 参考訳(メタデータ) (2022-08-05T01:23:54Z) - Reliable amortized variational inference with physics-based latent
distribution correction [0.4588028371034407]
ニューラルネットワークは、既存のモデルとデータのペアの後方分布を近似するように訓練される。
このアプローチの精度は、高忠実度トレーニングデータの可用性に依存する。
補正ステップは, ソース実験数の変化, ノイズ分散, 先行分布の変化に対して, 償却された変分推論の頑健さを向上することを示す。
論文 参考訳(メタデータ) (2022-07-24T02:38:54Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
経験的に、よく調和された正規化スキームは、推論されたモデルの品質を劇的に改善する。
生成的ペアワイドグラフィカルモデルの最大Aポストエリオーリ(MAP)推論におけるL2とL1の正規化について検討する。
論文 参考訳(メタデータ) (2021-12-02T14:45:16Z) - Robust Correction of Sampling Bias Using Cumulative Distribution
Functions [19.551668880584973]
変数ドメインとバイアス付きデータセットは、トレーニングとターゲット分布の違いにつながる可能性がある。
これを緩和するための現在のアプローチは、しばしばトレーニングとターゲット確率密度関数の比率を推定することに依存する。
論文 参考訳(メタデータ) (2020-10-23T22:13:00Z) - Addressing Variance Shrinkage in Variational Autoencoders using Quantile
Regression [0.0]
可変変分オートエンコーダ (VAE) は, 医用画像の病変検出などの応用において, 異常検出の一般的なモデルとなっている。
本稿では,分散の縮小や過小評価といったよく知られた問題を避けるための代替手法について述べる。
ガウスの仮定の下で推定された定量値を用いて平均値と分散値を計算し、再構成確率を外乱検出や異常検出の原理的アプローチとして計算する。
論文 参考訳(メタデータ) (2020-10-18T17:37:39Z) - Distributional Reinforcement Learning via Moment Matching [54.16108052278444]
ニューラルネットワークを用いて各戻り分布から統計量の有限集合を学習する手法を定式化する。
我々の手法は、戻り分布とベルマン目標の間のモーメントの全ての順序を暗黙的に一致させるものとして解釈できる。
Atariゲームスイートの実験により,本手法は標準分布RLベースラインよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-07-24T05:18:17Z) - Calibration of Neural Networks using Splines [51.42640515410253]
キャリブレーション誤差の測定は、2つの経験的分布を比較します。
古典的コルモゴロフ・スミルノフ統計テスト(KS)にインスパイアされたビンニングフリーキャリブレーション尺度を導入する。
提案手法は,KS誤差に対する既存の手法と,他の一般的なキャリブレーション手法とを一貫して比較する。
論文 参考訳(メタデータ) (2020-06-23T07:18:05Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
本稿では, 分数分解設計理論に基づく新しいバランスサブサンプル安定予測法を提案する。
設計理論解析により,提案手法は分布シフトによって誘導される予測器間の共起効果を低減できることを示した。
合成および実世界の両方のデータセットに関する数値実験により、BSSPアルゴリズムは未知のテストデータ間で安定した予測を行うためのベースライン法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2020-06-08T07:01:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。