Connecting Quantum Cities: Simulation of a Satellite-Based Quantum
Network
- URL: http://arxiv.org/abs/2307.11606v1
- Date: Fri, 21 Jul 2023 14:22:29 GMT
- Title: Connecting Quantum Cities: Simulation of a Satellite-Based Quantum
Network
- Authors: Raja Yehia, Matteo Schiavon, Valentina Marulanda Acosta, Tim Coopmans,
Iordanis Kerenidis, David Elkouss and Eleni Diamanti
- Abstract summary: We present and analyse an architecture for a European-scale quantum network using satellite links to connect Quantum Cities.
We benchmark the performance of such a network linking distant locations in Europe in terms of quantum key distribution rates.
Our results highlight the key parameters and the limits of current satellite quantum communication links and can be used to assist the design of future missions.
- Score: 2.3746609573239756
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present and analyse an architecture for a European-scale quantum network
using satellite links to connect Quantum Cities, which are metropolitan quantum
networks with minimal hardware requirements for the end users. Using NetSquid,
a quantum network simulation tool based on discrete events, we assess and
benchmark the performance of such a network linking distant locations in Europe
in terms of quantum key distribution rates, considering realistic parameters
for currently available or near-term technology. Our results highlight the key
parameters and the limits of current satellite quantum communication links and
can be used to assist the design of future missions. We also discuss the
possibility of using high-altitude balloons as an alternative to satellites.
Related papers
- Quantum Backbone Networks for Hybrid Quantum Dataframe Transmission [0.26217304977339473]
We elaborate on the design that uses entanglement and quantum teleportation to build the quantum backbone between packetized quantum networks.
We design a network interface to interconnect packetized quantum networks with entanglement-based quantum backbone networks.
For feasibility, we analyze various system parameters via simulation to benchmark the performance of the overall network.
arXiv Detail & Related papers (2024-04-29T09:07:44Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Towards Quantum-Native Communication Systems: New Developments, Trends,
and Challenges [63.67245855948243]
The survey examines technologies such as quantum-domain (QD) multi-input multi-output (MIMO), QD non-orthogonal multiple access (NOMA), quantum secure direct communication (QSDC)
The current status of quantum sensing, quantum radar, and quantum timing is briefly reviewed in support of future applications.
arXiv Detail & Related papers (2023-11-09T09:45:52Z) - Quantum City: simulation of a practical near-term metropolitan quantum
network [3.0969191504482247]
We present the architecture and analyze the applications of a metropolitan-scale quantum network that requires only limited hardware resources for end users.
Using NetSquid, a quantum network simulation tool based on discrete events, we assess the performance of several quantum network protocols involving two or more users in various configurations.
Our results show that practical quantum-enhanced network functionalities are within reach today and can prepare the ground for further applications when more advanced technology becomes available.
arXiv Detail & Related papers (2022-11-02T15:09:15Z) - Quantum Network Utility: A Framework for Benchmarking Quantum Networks [14.638996634412976]
We propose a general framework for quantifying the performance of a quantum network.
We define the quantum network utility metric $U_QN$ to capture the social and economic value of quantum networks.
arXiv Detail & Related papers (2022-10-19T17:50:11Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - End-to-End Capacities of Hybrid Quantum Networks [0.0]
Future quantum networks will be hybrid structures, constructed from complex architectures of quantum repeaters interconnected by quantum channels.
In this hybrid setting, the interplay between the channel quality within network sub-structures must be carefully considered.
We present a general formalism for studying the capacities of arbitrary, hybrid quantum networks, before specifying to the regime of atmospheric and space-based quantum channels.
arXiv Detail & Related papers (2022-07-12T11:49:17Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Satellite-based photonic quantum networks are small-world [0.9176056742068814]
We study the properties of the photonic networks that can be generated by satellite-based quantum communication.
We predict that satellites can generate small-world networks, implying that physically distant nodes are actually near from a network perspective.
This puts satellite-based quantum communication as the most promising technology to distribute entanglement across large distances in quantum networks of growing size and complexity.
arXiv Detail & Related papers (2020-12-02T12:31:12Z) - SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks [53.56179714852967]
This work develops SeQUeNCe, a comprehensive, customizable quantum network simulator.
We implement a comprehensive suite of network protocols and demonstrate the use of SeQUeNCe by simulating a photonic quantum network with nine routers equipped with quantum memories.
We are releasing SeQUeNCe as an open source tool and aim to generate community interest in extending it.
arXiv Detail & Related papers (2020-09-25T01:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.