論文の概要: What, Indeed, is an Achievable Provable Guarantee for Learning-Enabled
Safety Critical Systems
- arxiv url: http://arxiv.org/abs/2307.11784v1
- Date: Thu, 20 Jul 2023 12:40:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 19:46:59.125787
- Title: What, Indeed, is an Achievable Provable Guarantee for Learning-Enabled
Safety Critical Systems
- Title(参考訳): 実際、学習可能安全クリティカルシステムのための達成可能な保証手段とは何か
- Authors: Saddek Bensalem, Chih-Hong Cheng, Wei Huang, Xiaowei Huang, Changshun
Wu, Xingyu Zhao
- Abstract要約: 機械学習は目覚ましい進歩を遂げているが、安全クリティカルな領域で学習可能なコンポーネントを確実に活用することは、依然として課題となっている。
まず,そのようなシステムの設計と検証に関わる工学的課題と研究課題について論じる。
そして,既存の研究が実際に証明可能な保証を達成できないという観察に基づいて,証明可能な統計的保証の最終的な達成のための2段階の検証手法を推進した。
- 参考スコア(独自算出の注目度): 8.930000909500702
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning has made remarkable advancements, but confidently utilising
learning-enabled components in safety-critical domains still poses challenges.
Among the challenges, it is known that a rigorous, yet practical, way of
achieving safety guarantees is one of the most prominent. In this paper, we
first discuss the engineering and research challenges associated with the
design and verification of such systems. Then, based on the observation that
existing works cannot actually achieve provable guarantees, we promote a
two-step verification method for the ultimate achievement of provable
statistical guarantees.
- Abstract(参考訳): 機械学習は目覚ましい進歩を遂げているが、安全クリティカルな領域で学習可能なコンポーネントを確実に活用することは、依然として課題となっている。
課題の1つは、厳格で実用的で、安全保証を達成する方法が最も顕著であることである。
本稿ではまず,そのようなシステムの設計と検証に関わる工学的課題と研究課題について論じる。
そして,既存の著作物が実際に証明可能な保証を達成できないという観測に基づいて,証明可能な統計保証の最終的な達成のための2段階検証手法を奨励する。
関連論文リスト
- Safety through Permissibility: Shield Construction for Fast and Safe Reinforcement Learning [57.84059344739159]
シールドディング」は、強化学習(RL)の安全性を強制する一般的な手法である
安全と遮蔽構造に対処する新しい許容性に基づく枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T18:00:21Z) - Feasibility Consistent Representation Learning for Safe Reinforcement Learning [25.258227763316228]
FCSRL(Fasibility Consistent Safe Reinforcement Learning)という新しいフレームワークを導入する。
本フレームワークは、表現学習と実現可能性指向の目的を組み合わせることで、安全RLのために生の状態から安全関連情報を識別し、抽出する。
本手法は,従来の表現学習ベースラインよりも安全性に配慮した埋め込みを学習し,優れた性能を実現する。
論文 参考訳(メタデータ) (2024-05-20T01:37:21Z) - Safe Online Dynamics Learning with Initially Unknown Models and
Infeasible Safety Certificates [45.72598064481916]
本稿では、制御バリア関数(CBF)2次コーンプログラムに基づく、堅牢な安全証明書を備えた学習ベースの設定について考察する。
制御バリア関数証明書が実現可能ならば,その安全性を確保するため,本手法では,データ収集と制御バリア関数制約の実現可能性の回復のために,システムダイナミクスを探索する。
論文 参考訳(メタデータ) (2023-11-03T14:23:57Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - Towards Safe Continuing Task Reinforcement Learning [21.390201009230246]
再起動を必要とせずに継続するタスク設定で動作可能なアルゴリズムを提案する。
本手法は,安全な探索を通じて安全な政策を学習する上で,提案手法の能力を示す数値例で評価する。
論文 参考訳(メタデータ) (2021-02-24T22:12:25Z) - Conservative Safety Critics for Exploration [120.73241848565449]
強化学習(RL)における安全な探索の課題について検討する。
我々は、批評家を通じて環境状態の保守的な安全性推定を学習する。
提案手法は,破滅的故障率を著しく低く抑えながら,競争力のあるタスク性能を実現することができることを示す。
論文 参考訳(メタデータ) (2020-10-27T17:54:25Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Provably Safe PAC-MDP Exploration Using Analogies [87.41775218021044]
安全クリティカルドメインに強化学習を適用する上での課題は、探索と安全性のバランスをとる方法を理解することだ。
我々は,未知のダイナミックスを持つMDPにおいて,確実に安全な探索を行うアルゴリズムであるAnalogous Safe-State Exploration (ASE)を提案する。
提案手法は, PAC-MDP 感覚の準最適政策を安全に学習するために, 状態-作用対間の類似性を利用する。
論文 参考訳(メタデータ) (2020-07-07T15:50:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。