論文の概要: Mixed-model Sequencing with Reinsertion of Failed Vehicles: A Case Study
for Automobile Industry
- arxiv url: http://arxiv.org/abs/2307.11869v1
- Date: Fri, 21 Jul 2023 19:20:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 19:19:06.980919
- Title: Mixed-model Sequencing with Reinsertion of Failed Vehicles: A Case Study
for Automobile Industry
- Title(参考訳): 故障車両の再挿入を考慮した混合モデルシークエンシング:自動車産業を事例として
- Authors: I. Ozan Yilmazlar, Mary E. Kurz
- Abstract要約: 自動車業界では、資材不足、塗料の故障などの理由により、計画されたスケジュールに従って製造できない車もある。
一方、適切な位置で故障車両の復活を動的に行う。
本研究では, 製品故障と統合再サーションプロセスを伴う混合モデルシークエンシング問題に対して, バイオオブジェクティブな2段階プログラムと定式化の改良を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the automotive industry, some vehicles, failed vehicles, cannot be
produced according to the planned schedule due to some reasons such as material
shortage, paint failure, etc. These vehicles are pulled out of the sequence,
potentially resulting in an increased work overload. On the other hand, the
reinsertion of failed vehicles is executed dynamically as suitable positions
occur. In case such positions do not occur enough, either the vehicles waiting
for reinsertion accumulate or reinsertions are made to worse positions by
sacrificing production efficiency.
This study proposes a bi-objective two-stage stochastic program and
formulation improvements for a mixed-model sequencing problem with stochastic
product failures and integrated reinsertion process. Moreover, an evolutionary
optimization algorithm, a two-stage local search algorithm, and a hybrid
approach are developed. Numerical experiments over a case study show that while
the hybrid algorithm better explores the Pareto front representation, the local
search algorithm provides more reliable solutions regarding work overload
objective. Finally, the results of the dynamic reinsertion simulations show
that we can decrease the work overload by ~20\% while significantly decreasing
the waiting time of the failed vehicles by considering vehicle failures and
integrating the reinsertion process into the mixed-model sequencing problem.
- Abstract(参考訳): 自動車業界では、資材不足、塗料の故障などの理由により、計画されたスケジュールに従って製造できない車もある。
これらの車両はシーケンスから引き出され、作業負荷の増加につながる可能性がある。
一方、故障車両の復帰は適切な位置において動的に実行される。
このような位置が十分に発生しない場合には、再沈降待ちの車両を生産効率を犠牲にして悪化させる。
本研究では,2段階の確率的プログラムを提案し,確率的製品故障と統合再サーションプロセスを伴う混合モデルシークエンシング問題に対する定式化改善を提案する。
さらに,進化的最適化アルゴリズム,二段階局所探索アルゴリズム,ハイブリッド手法を開発した。
ケーススタディ上の数値実験により、ハイブリッドアルゴリズムはパレートフロント表現をよりよく探索するが、局所探索アルゴリズムは作業過負荷の目的に関するより信頼性の高いソリューションを提供する。
最後に, 動的再送シミュレーションの結果から, 車両故障を考慮したり, 混合モデル解析問題に再送プロセスを統合することで, 作業過負荷を約20\%低減し, 故障車両の待ち時間を大幅に削減できることがわかった。
関連論文リスト
- Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models [60.87795376541144]
World Model(ワールドモデル)は、エージェントの次の状態を予測できるニューラルネットワークである。
エンド・ツー・エンドのトレーニングでは、人間のデモで観察された状態と整合してエラーから回復する方法を学ぶ。
クローズドループ試験における先行技術に有意な改善がみられた定性的,定量的な結果を示す。
論文 参考訳(メタデータ) (2024-09-25T06:48:25Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
本稿では,Adaptive Model Merging (AdaMerging)と呼ばれる革新的な手法を紹介する。
本来のトレーニングデータに頼ることなく、タスクレベルでも階層的にも、モデルマージの係数を自律的に学習することを目指している。
AdaMergingは、現在の最先端のタスク演算のマージ方式と比較すると、パフォーマンスが11%向上している。
論文 参考訳(メタデータ) (2023-10-04T04:26:33Z) - Physics-Driven ML-Based Modelling for Correcting Inverse Estimation [6.018296524383859]
この研究は、SAE逆問題にそれらを採用する前に失敗した状態推定を検出し、修正することに焦点を当てている。
本稿では,低エラーと高効率の両方を実現することを目的として,GEESEという新しい手法を提案する。
GEESEは3つの実世界のSAE逆問題でテストされ、最先端の最適化/探索手法と比較される。
論文 参考訳(メタデータ) (2023-09-25T09:37:19Z) - Mixed-model Sequencing with Stochastic Failures: A Case Study for
Automobile Industry [0.0]
自動車業界では、製造日に先立って製造される車両の順序が決定される。
本稿では,製品故障に伴う混合モデルシークエンシング(MMS)問題に対する2段階プログラムを提案する。
論文 参考訳(メタデータ) (2023-06-22T01:09:18Z) - Robustness Benchmark of Road User Trajectory Prediction Models for
Automated Driving [0.0]
車両内のモデル展開中に観測される機能不全をシミュレートする摂動に対して、機械学習モデルをベンチマークする。
同様の摂動を持つモデルのトレーニングは、パフォーマンスの劣化を効果的に低減し、エラーは+87.5%まで増加する。
効果的な緩和戦略であるにもかかわらず、トレーニング中の摂動によるデータ拡張は、予期せぬ摂動に対する堅牢性を保証するものではない、と我々は主張する。
論文 参考訳(メタデータ) (2023-04-04T15:47:42Z) - Continuous Trajectory Generation Based on Two-Stage GAN [50.55181727145379]
本稿では,道路網上の連続軌道を生成するために,新たな2段階生成対向フレームワークを提案する。
具体的には、A*アルゴリズムの人間の移動性仮説に基づいてジェネレータを構築し、人間の移動性について学習する。
判別器では, 逐次報酬と移動ヤウ報酬を組み合わせることで, 発電機の有効性を高める。
論文 参考訳(メタデータ) (2023-01-16T09:54:02Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
深層学習と物理運動モデルを組み合わせたハイブリッドアプローチを提案する。
ハイブリッドモデルの一部として,ディープニューラルネットワークの出力範囲を制限することで,解釈可能性を実現する。
その結果, ハイブリッドモデルでは, 既存のディープラーニング手法に比べて精度を低下させることなく, モデル解釈性が向上できることがわかった。
論文 参考訳(メタデータ) (2021-03-11T15:21:08Z) - Deep Structured Reactive Planning [94.92994828905984]
自動運転のための新しいデータ駆動型リアクティブ計画目標を提案する。
本モデルは,非常に複雑な操作を成功させる上で,非反応性変種よりも優れることを示す。
論文 参考訳(メタデータ) (2021-01-18T01:43:36Z) - Social NCE: Contrastive Learning of Socially-aware Motion
Representations [87.82126838588279]
実験結果から, 提案手法は最近の軌道予測, 行動クローニング, 強化学習アルゴリズムの衝突速度を劇的に低減することがわかった。
本手法は,ニューラルネットワークの設計に関する仮定をほとんど示さないため,神経運動モデルのロバスト性を促進する汎用的手法として使用できる。
論文 参考訳(メタデータ) (2020-12-21T22:25:06Z) - A Two-Stage Metaheuristic Algorithm for the Dynamic Vehicle Routing
Problem in Industry 4.0 approach [3.6317403990273402]
本研究は、各車両の容量制約を超えることなく、輸送コストを最小化することを目的とする。
新しい注文は、車両が既存の注文を配送している間に、システムに特定のタイミングで届く。
本稿では,DVRPを解くための2段階ハイブリッドアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-10T18:39:03Z) - Scalable Autonomous Vehicle Safety Validation through Dynamic
Programming and Scene Decomposition [37.61747231296097]
本稿では、近似動的プログラミングを用いて、自律的なポリシの障害に対する分布を推定する新しい安全性検証手法を提案する。
両実験とも, ベースラインアプローチと比較して, 故障数の増加が見られた。
論文 参考訳(メタデータ) (2020-04-14T21:03:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。