論文の概要: Vulnerability Detection Through an Adversarial Fuzzing Algorithm
- arxiv url: http://arxiv.org/abs/2307.11917v1
- Date: Fri, 21 Jul 2023 21:46:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 16:43:43.514521
- Title: Vulnerability Detection Through an Adversarial Fuzzing Algorithm
- Title(参考訳): 逆ファジィ法による脆弱性検出
- Authors: Michael Wang, Michael Robinson
- Abstract要約: 本プロジェクトは,ファザがより多くの経路を探索し,短時間でより多くのバグを発見できるようにすることにより,既存のファザの効率を向上させることを目的としている。
逆法は、より効率的なファジィングのためのテストケースを生成するために、現在の進化アルゴリズムの上に構築されている。
- 参考スコア(独自算出の注目度): 2.074079789045646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fuzzing is a popular vulnerability automated testing method utilized by
professionals and broader community alike. However, despite its abilities,
fuzzing is a time-consuming, computationally expensive process. This is
problematic for the open source community and smaller developers, as most
people will not have dedicated security professionals and/or knowledge to
perform extensive testing on their own. The goal of this project is to increase
the efficiency of existing fuzzers by allowing fuzzers to explore more paths
and find more bugs in shorter amounts of time, while still remaining operable
on a personal device. To accomplish this, adversarial methods are built on top
of current evolutionary algorithms to generate test cases for further and more
efficient fuzzing. The results of this show that adversarial attacks do in fact
increase outpaces existing fuzzers significantly and, consequently, crashes
found.
- Abstract(参考訳): Fuzzingは、プロフェッショナルや幅広いコミュニティが利用する、一般的な脆弱性自動テスト手法である。
しかし、その能力にもかかわらず、ファジィングは時間を要する計算コストの高いプロセスである。
これはオープンソースコミュニティや小さな開発者にとって問題であり、ほとんどの人は独自のテストを実行するための専門的なセキュリティ専門家や知識を持っていない。
プロジェクトの目的は、ファジィザがより多くの経路を探索し、より短い時間でバグを見つけることができる一方で、パーソナルデバイス上でも操作性を維持しながら、既存のファジィザの効率を向上させることである。
これを実現するために、現在の進化アルゴリズムの上に敵法を構築し、より効率的にファジィングのためのテストケースを生成する。
この結果、敵対的な攻撃は既存のファザーを大幅に上回り、その結果、クラッシュが発見された。
関連論文リスト
- FuzzDistill: Intelligent Fuzzing Target Selection using Compile-Time Analysis and Machine Learning [0.0]
FuzzDistillは、コンパイル時のデータと機械学習を利用してファジィングターゲットを洗練するアプローチです。
実世界のソフトウェアで実施した実験を通じて,私のアプローチの有効性を実証し,テスト時間の大幅な短縮を実証した。
論文 参考訳(メタデータ) (2024-12-11T04:55:58Z) - CKGFuzzer: LLM-Based Fuzz Driver Generation Enhanced By Code Knowledge Graph [29.490817477791357]
本稿では,コード知識グラフによって駆動され,インテリジェントエージェントシステムによって駆動されるファズテスト手法を提案する。
コードナレッジグラフは、そのグラフの各ノードがコードエンティティを表す、プログラム間解析によって構築される。
CKGFuzzerは最先端技術と比較してコードカバレッジが平均8.73%向上した。
論文 参考訳(メタデータ) (2024-11-18T12:41:16Z) - Pipe-Cleaner: Flexible Fuzzing Using Security Policies [0.07499722271664144]
Pipe-CleanerはCコードの脆弱性を検出し解析するシステムである。
これは、タグベースのランタイムリファレンスモニターによって強制されるフレキシブルな開発者設計のセキュリティポリシーに基づいている。
いくつかのヒープ関連のセキュリティ脆弱性に対して、このアプローチの可能性を実証する。
論文 参考訳(メタデータ) (2024-10-31T23:35:22Z) - FuzzCoder: Byte-level Fuzzing Test via Large Language Model [46.18191648883695]
我々は,攻撃を成功させることで,入力ファイルのパターンを学習するために,微調整された大言語モデル(FuzzCoder)を採用することを提案する。
FuzzCoderは、プログラムの異常な動作を引き起こすために、入力ファイル内の突然変異位置と戦略位置を予測することができる。
論文 参考訳(メタデータ) (2024-09-03T14:40:31Z) - PrescientFuzz: A more effective exploration approach for grey-box fuzzing [0.45053464397400894]
我々は、対象プログラムの制御フローグラフ(CFG)から意味情報を利用する、PrescientFuzzと呼ばれるLibAFLのファズベッハの強化版を作成する。
本研究では,その実行経路と未発見エッジとの近接性に基づいて,突然変異に対する入力の選択を優先する入力コーパススケジューラを開発する。
論文 参考訳(メタデータ) (2024-04-29T17:21:18Z) - Online Corrupted User Detection and Regret Minimization [49.536254494829436]
現実世界のオンラインウェブシステムでは、複数のユーザがシステムに順次到着する。
乱れた行動から未知のユーザ関係を学習・活用するために,LOCUDという重要なオンライン学習問題を提案する。
我々はRCLUB-WCUの推測ユーザ関係に基づく新しいオンライン検出アルゴリズムOCCUDを考案した。
論文 参考訳(メタデータ) (2023-10-07T10:20:26Z) - EDEFuzz: A Web API Fuzzer for Excessive Data Exposures [3.5061201620029885]
Excessive Data Exposure(EDE)は2019年で3番目に重大なAPI脆弱性である。
このような問題を効果的に発見し、修正する自動化ツールが、研究や業界でもほとんどありません。
EDEFuzzと呼ばれる最初のファジィツールを構築し、EDEを体系的に検出します。
論文 参考訳(メタデータ) (2023-01-23T04:05:08Z) - A Large-scale Multiple-objective Method for Black-box Attack against
Object Detection [70.00150794625053]
我々は、真正の確率を最小化し、偽正の確率を最大化し、より多くの偽正の物体が新しい真正の有界箱を作らないようにする。
我々は、GARSDCと呼ばれるランダム・サブセット選択とディバイド・アンド・コンカーによる標準的な遺伝的アルゴリズムを拡張し、効率を大幅に改善する。
最先端攻撃法と比較して、GARSDCはmAPでは平均12.0、広範囲な実験ではクエリでは約1000倍減少する。
論文 参考訳(メタデータ) (2022-09-16T08:36:42Z) - FairCVtest Demo: Understanding Bias in Multimodal Learning with a
Testbed in Fair Automatic Recruitment [79.23531577235887]
このデモは、非構造化データから機密情報を抽出する採用ツールの背後にある人工知能(AI)の能力を示しています。
また、このデモには差別認識学習のための新しいアルゴリズムが含まれており、マルチモーダルAIフレームワークの機密情報を排除している。
論文 参考訳(メタデータ) (2020-09-12T17:45:09Z) - Quickest Intruder Detection for Multiple User Active Authentication [74.5256211285431]
我々は,Multiple-user Quickest Intruder Detection (MQID)アルゴリズムを定式化する。
より少ない観測サンプルで侵入者検出を行うデータ効率のシナリオにアルゴリズムを拡張した。
顔のモダリティに基づく2つのAAデータセットに対する提案手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-06-21T21:59:01Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
我々は、性別や人種の偏りを意識的に評価したマルチモーダルな合成プロファイルを用いて、自動求人アルゴリズムを訓練する。
我々の方法論と結果は、一般により公平なAIベースのツール、特により公平な自動採用システムを生成する方法を示している。
論文 参考訳(メタデータ) (2020-04-15T15:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。