論文の概要: HuntFUZZ: Enhancing Error Handling Testing through Clustering Based Fuzzing
- arxiv url: http://arxiv.org/abs/2407.04297v1
- Date: Fri, 5 Jul 2024 06:58:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 14:21:30.696683
- Title: HuntFUZZ: Enhancing Error Handling Testing through Clustering Based Fuzzing
- Title(参考訳): HuntFUZZ:クラスタリングベースのファズリングによるエラー処理テストの強化
- Authors: Jin Wei, Ping Chen, Jun Dai, Xiaoyan Sun, Zhihao Zhang, Chang Xu, Yi Wanga,
- Abstract要約: 本稿では,SFIベースのファジィフレームワークであるHuntFUZZを紹介する。
我々はHuntFUZZを42のアプリケーションで評価し、HuntFUZZは162の既知のバグを明らかにし、そのうち62のバグはエラー処理に関連している。
- 参考スコア(独自算出の注目度): 19.31537246674011
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Testing a program's capability to effectively handling errors is a significant challenge, given that program errors are relatively uncommon. To solve this, Software Fault Injection (SFI)-based fuzzing integrates SFI and traditional fuzzing, injecting and triggering errors for testing (error handling) code. However, we observe that current SFI-based fuzzing approaches have overlooked the correlation between paths housing error points. In fact, the execution paths of error points often share common paths. Nonetheless, Fuzzers usually generate test cases repeatedly to test error points on commonly traversed paths. This practice can compromise the efficiency of the fuzzer(s). Thus, this paper introduces HuntFUZZ, a novel SFI-based fuzzing framework that addresses the issue of redundant testing of error points with correlated paths. Specifically, HuntFUZZ clusters these correlated error points and utilizes concolic execution to compute constraints only for common paths within each cluster. By doing so, we provide the fuzzer with efficient test cases to explore related error points with minimal redundancy. We evaluate HuntFUZZ on a diverse set of 42 applications, and HuntFUZZ successfully reveals 162 known bugs, with 62 of them being related to error handling. Additionally, due to its efficient error point detection method, HuntFUZZ discovers 7 unique zero-day bugs, which are all missed by existing fuzzers. Furthermore, we compare HuntFUZZ with 4 existing fuzzing approaches, including AFL, AFL++, AFLGo, and EH-FUZZ. Our evaluation confirms that HuntFUZZ can cover a broader range of error points, and it exhibits better performance in terms of bug finding speed.
- Abstract(参考訳): エラーを効果的に処理するプログラムの能力をテストすることは、プログラムエラーが比較的稀であることを考えると、大きな課題である。
これを解決するために、Software Fault Injection(SFI)ベースのファジィは、SFIと従来のファジィを統合し、テスト(エラーハンドリング)コードのエラーを注入し、トリガーする。
しかし、現在のSFIベースのファジリング手法は、経路ハウジングエラー点間の相関性を見落としている。
実際、エラーポイントの実行パスはしばしば共通のパスを共有します。
それでも、Fuzzerは通常、一般的にトラバースされたパスでエラーポイントをテストするために、繰り返しテストケースを生成する。
このプラクティスはファジッターの効率を損なう可能性がある。
そこで本稿では,SFIベースのファジィフレームワークであるHuntFUZZを紹介する。
具体的には、HuntFUZZはこれらの相関するエラーポイントをクラスタ化し、各クラスタ内の共通パスに対してのみ制約を計算するために、ココリック実行を利用する。
これにより、ファジィザに効率の良いテストケースを提供し、最小冗長性で関連するエラー点を探索する。
我々はHuntFUZZを42のアプリケーションで評価し、HuntFUZZは162の既知のバグを明らかにし、そのうち62のバグはエラー処理に関連している。
さらに、HuntFUZZはその効率的なエラー点検出方法により、7つのユニークなゼロデイバグを発見し、それらは全て既存のファズナーによって見逃されている。
さらに,HuntFUZZと,AFL,AFL++,AFLGo,EH-FUZの4つのファジィ手法を比較した。
評価の結果,HuntFUZZは広い範囲のエラー点をカバーできることを確認した。
関連論文リスト
- Pipe-Cleaner: Flexible Fuzzing Using Security Policies [0.07499722271664144]
Pipe-CleanerはCコードの脆弱性を検出し解析するシステムである。
これは、タグベースのランタイムリファレンスモニターによって強制されるフレキシブルな開発者設計のセキュリティポリシーに基づいている。
いくつかのヒープ関連のセキュリティ脆弱性に対して、このアプローチの可能性を実証する。
論文 参考訳(メタデータ) (2024-10-31T23:35:22Z) - Subtle Errors Matter: Preference Learning via Error-injected Self-editing [59.405145971637204]
eRror-Injected Self-Editing (RISE) と呼ばれる新しい好み学習フレームワークを提案する。
RISEは定義済みの微妙な誤りを正しい解の部分的なトークンに注入し、エラー軽減のためにハードペアを構築する。
RISEの有効性を検証する実験では、Qwen2-7B-Instructでは、GSM8Kでは3.0%、MATHでは7.9%が顕著に改善された。
論文 参考訳(メタデータ) (2024-10-09T07:43:38Z) - Comment on Revisiting Neural Program Smoothing for Fuzzing [34.32355705821806]
ACM FSE 2023で受け入れられたMLFuzzは、機械学習ベースのファザーであるNEUZZのパフォーマンスを再考する。
実装におけるいくつかの致命的なバグと間違った評価設定のために、その主な結論が完全に間違っていることを実証する。
論文 参考訳(メタデータ) (2024-09-06T16:07:22Z) - FuzzCoder: Byte-level Fuzzing Test via Large Language Model [46.18191648883695]
我々は,攻撃を成功させることで,入力ファイルのパターンを学習するために,微調整された大言語モデル(FuzzCoder)を採用することを提案する。
FuzzCoderは、プログラムの異常な動作を引き起こすために、入力ファイル内の突然変異位置と戦略位置を予測することができる。
論文 参考訳(メタデータ) (2024-09-03T14:40:31Z) - Leveraging Stack Traces for Spectrum-based Fault Localization in the Absence of Failing Tests [44.13331329339185]
我々は,スタックトレースデータをテストカバレッジと統合し,障害局所化を強化する新しいアプローチであるSBESTを導入する。
提案手法では,平均精度(MAP)が32.22%向上し,平均相互ランク(MRR)が17.43%向上した。
論文 参考訳(メタデータ) (2024-05-01T15:15:52Z) - Understanding and Mitigating Classification Errors Through Interpretable
Token Patterns [58.91023283103762]
容易に解釈可能な用語でエラーを特徴付けることは、分類器が体系的なエラーを起こす傾向にあるかどうかを洞察する。
正しい予測と誤予測を区別するトークンのパターンを発見することを提案する。
提案手法であるPremiseが実際によく動作することを示す。
論文 参考訳(メタデータ) (2023-11-18T00:24:26Z) - Fuzzing with Quantitative and Adaptive Hot-Bytes Identification [6.442499249981947]
アメリカのファジィ・ロック(fuzzy lop)はファジィ・ロック(fuzzy lop)と呼ばれるファジィ・ロック(fuzzy lop)と呼ばれるファジィ・ロック(fuzzy lop)と呼ばれるファジィ・ロック(fuzzy lop)と呼ばれるファジィ・ロック(fuzzy lop)ツールだ。
以下の原則に基づいて設計したツールという手法を提案する。
実世界の10のプログラムとLAVA-Mデータセットによる評価結果から,ツールキーブが分岐カバレッジを持続的に増加させ,他のファザよりも多くのバグを発見できた。
論文 参考訳(メタデータ) (2023-07-05T13:41:35Z) - Fast and Accurate Error Simulation for CNNs against Soft Errors [64.54260986994163]
本稿では,誤りシミュレーションエンジンを用いて,コナールニューラルネットワーク(CNN)の信頼性解析のためのフレームワークを提案する。
これらの誤差モデルは、故障によって誘導されるCNN演算子の出力の破損パターンに基づいて定義される。
提案手法は,SASSIFIの欠陥効果の約99%の精度と,限定的なエラーモデルのみを実装した44倍から63倍までのスピードアップを実現する。
論文 参考訳(メタデータ) (2022-06-04T19:45:02Z) - TACRED Revisited: A Thorough Evaluation of the TACRED Relation
Extraction Task [80.38130122127882]
TACREDはリレーショナル抽出(RE)において最も大きく、最も広く使われているクラウドソースデータセットの1つである
パフォーマンスの天井に到達したのか、改善の余地はあるのか?
ラベルエラーは絶対F1テストエラーの8%を占めており、例の50%以上を可逆化する必要がある。
論文 参考訳(メタデータ) (2020-04-30T15:07:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。