External Reasoning: Towards Multi-Large-Language-Models Interchangeable
Assistance with Human Feedback
- URL: http://arxiv.org/abs/2307.12057v2
- Date: Sat, 26 Aug 2023 19:29:03 GMT
- Title: External Reasoning: Towards Multi-Large-Language-Models Interchangeable
Assistance with Human Feedback
- Authors: Akide Liu
- Abstract summary: This paper proposes that Large Language Models (LLMs) could be augmented through the selective integration of knowledge from external repositories.
Central to this approach is the establishment of a tiered policy for textbfExternal Reasoning based on Multiple LLM Interchange Assistance.
The results indicate state-of-the-art performance in crefcomparison, surpassing existing solutions including ChatPDF.com.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Memory is identified as a crucial human faculty that allows for the retention
of visual and linguistic information within the hippocampus and neurons in the
brain, which can subsequently be retrieved to address real-world challenges
that arise through a lifetime of learning. The resolution of complex AI tasks
through the application of acquired knowledge represents a stride toward the
realization of artificial general intelligence. However, despite the prevalence
of Large Language Models (LLMs) like GPT-3.5 and GPT-4 \cite{brown2020language,
leiter2023chatgpt, zaitsu2023distinguishing, OpenAI2023GPT4TR} , which have
displayed remarkable capabilities in language comprehension, generation,
interaction, and reasoning, they are inhibited by constraints on context length
that preclude the processing of extensive, continually evolving knowledge
bases. This paper proposes that LLMs could be augmented through the selective
integration of knowledge from external repositories, and in doing so,
introduces a novel methodology for External Reasoning, exemplified by ChatPDF.
Central to this approach is the establishment of a tiered policy for
\textbf{External Reasoning based on Multiple LLM Interchange Assistance} in
\cref{fig:overall}, where the level of support rendered is modulated across
entry, intermediate, and advanced tiers based on the complexity of the query,
with adjustments made in response to human feedback. A comprehensive evaluation
of this methodology is conducted using multiple LLMs and the results indicate
state-of-the-art performance in \cref{comparison} , surpassing existing
solutions including ChatPDF.com. Moreover, the paper emphasizes that this
approach is more efficient compared to the direct processing of full text by
LLMs. The source code is publicly available at:
\url{https://github.com/AkideLiu/ANLP}.
Related papers
- Bridging Context Gaps: Leveraging Coreference Resolution for Long Contextual Understanding [28.191029786204624]
We introduce the Long Question Coreference Adaptation (LQCA) method to enhance the performance of large language models (LLMs)
This framework focuses on coreference resolution tailored to long contexts, allowing the model to identify and manage references effectively.
The framework provides easier-to-handle partitions for LLMs, promoting better understanding.
arXiv Detail & Related papers (2024-10-02T15:39:55Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - Retrieval Meets Reasoning: Dynamic In-Context Editing for Long-Text Understanding [11.5386284281652]
We introduce a novel approach that re-imagines information retrieval through dynamic in-context editing.
By treating lengthy contexts as malleable external knowledge, our method interactively gathers and integrates relevant information.
Experimental results demonstrate that our method effectively empowers context-limited LLMs to engage in multi-hop reasoning with improved performance.
arXiv Detail & Related papers (2024-06-18T06:54:28Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
We propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL)
GLSCL capitalizes on latent shared semantics across modalities for text-video retrieval.
Our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost.
arXiv Detail & Related papers (2024-05-21T11:59:36Z) - IM-RAG: Multi-Round Retrieval-Augmented Generation Through Learning Inner Monologues [10.280113107290067]
The IM-RAG approach integrates Information Retrieval systems with Large Language Models (LLMs) to support multi-round RAG.
The entire IM process is optimized via Reinforcement Learning (RL) where a Progress Tracker is incorporated to provide mid-step rewards.
The results show that our approach achieves state-of-the-art (SOTA) performance while providing high flexibility in integrating IR modules.
arXiv Detail & Related papers (2024-05-15T12:41:20Z) - Wiki-LLaVA: Hierarchical Retrieval-Augmented Generation for Multimodal LLMs [39.54891426369773]
We focus on endowing such models with the capability of answering questions that require external knowledge.
Our approach, termed Wiki-LLaVA, aims at integrating an external knowledge source of multimodal documents.
We conduct extensive experiments on datasets tailored for visual question answering with external data and demonstrate the appropriateness of our approach.
arXiv Detail & Related papers (2024-04-23T18:00:09Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - Modeling Uncertainty and Using Post-fusion as Fallback Improves Retrieval Augmented Generation with LLMs [80.74263278847063]
The integration of retrieved passages and large language models (LLMs) has significantly contributed to improving open-domain question answering.
This paper investigates different methods of combining retrieved passages with LLMs to enhance answer generation.
arXiv Detail & Related papers (2023-08-24T05:26:54Z) - RRAML: Reinforced Retrieval Augmented Machine Learning [10.94680155282906]
We propose a novel framework called Reinforced Retrieval Augmented Machine Learning (RRAML)
RRAML integrates the reasoning capabilities of large language models with supporting information retrieved by a purpose-built retriever from a vast user-provided database.
We believe that the research agenda outlined in this paper has the potential to profoundly impact the field of AI.
arXiv Detail & Related papers (2023-07-24T13:51:19Z) - ChatABL: Abductive Learning via Natural Language Interaction with
ChatGPT [72.83383437501577]
Large language models (LLMs) have recently demonstrated significant potential in mathematical abilities.
LLMs currently have difficulty in bridging perception, language understanding and reasoning capabilities.
This paper presents a novel method for integrating LLMs into the abductive learning framework.
arXiv Detail & Related papers (2023-04-21T16:23:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.