A Zero-shot and Few-shot Study of Instruction-Finetuned Large Language Models Applied to Clinical and Biomedical Tasks
- URL: http://arxiv.org/abs/2307.12114v3
- Date: Sun, 9 Jun 2024 15:06:57 GMT
- Title: A Zero-shot and Few-shot Study of Instruction-Finetuned Large Language Models Applied to Clinical and Biomedical Tasks
- Authors: Yanis Labrak, Mickael Rouvier, Richard Dufour,
- Abstract summary: We evaluate four state-of-the-art instruction-tuned large language models (LLMs)
On a set of 13 real-world clinical and biomedical natural language processing (NLP) tasks in English.
- Score: 7.542019351929903
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We evaluate four state-of-the-art instruction-tuned large language models (LLMs) -- ChatGPT, Flan-T5 UL2, Tk-Instruct, and Alpaca -- on a set of 13 real-world clinical and biomedical natural language processing (NLP) tasks in English, such as named-entity recognition (NER), question-answering (QA), relation extraction (RE), etc. Our overall results demonstrate that the evaluated LLMs begin to approach performance of state-of-the-art models in zero- and few-shot scenarios for most tasks, and particularly well for the QA task, even though they have never seen examples from these tasks before. However, we observed that the classification and RE tasks perform below what can be achieved with a specifically trained model for the medical field, such as PubMedBERT. Finally, we noted that no LLM outperforms all the others on all the studied tasks, with some models being better suited for certain tasks than others.
Related papers
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - A Preliminary Study of o1 in Medicine: Are We Closer to an AI Doctor? [33.70022886795487]
OpenAI's o1 stands out as the first model with a chain-of-thought technique using reinforcement learning strategies.
This report provides a comprehensive exploration of o1 on different medical scenarios, examining 3 key aspects: understanding, reasoning, and multilinguality.
arXiv Detail & Related papers (2024-09-23T17:59:43Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
We present MedS-Bench, a benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts.
MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation.
MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks.
arXiv Detail & Related papers (2024-08-22T17:01:34Z) - DrBenchmark: A Large Language Understanding Evaluation Benchmark for
French Biomedical Domain [8.246368441549967]
We present the first-ever publicly available French biomedical language understanding benchmark called DrBenchmark.
It encompasses 20 diversified tasks, including named-entity recognition, part-of-speech tagging, question-answering, semantic textual similarity, and classification.
We evaluate 8 state-of-the-art pre-trained masked language models (MLMs) on general and biomedical-specific data, as well as English specifics to assess their cross-lingual capabilities.
arXiv Detail & Related papers (2024-02-20T23:54:02Z) - BLESS: Benchmarking Large Language Models on Sentence Simplification [55.461555829492866]
We present BLESS, a performance benchmark of the most recent state-of-the-art large language models (LLMs) on the task of text simplification (TS)
We assess a total of 44 models, differing in size, architecture, pre-training methods, and accessibility, on three test sets from different domains (Wikipedia, news, and medical) under a few-shot setting.
Our evaluation indicates that the best LLMs, despite not being trained on TS, perform comparably with state-of-the-art TS baselines.
arXiv Detail & Related papers (2023-10-24T12:18:17Z) - How far is Language Model from 100% Few-shot Named Entity Recognition in Medical Domain [14.635536657783613]
This paper aims to compare the performance of LMs in medical few-shot NER and answer How far is LMs from 100% Few-shot NER in Medical Domain.
Our findings clearly indicate that LLMs outperform SLMs in few-shot medical NER tasks, given the presence of suitable examples and appropriate logical frameworks.
We introduce a simple and effective method called textscRT (Retrieving and Thinking), which serves as retrievers, finding relevant examples, and as thinkers, employing a step-by-step reasoning process.
arXiv Detail & Related papers (2023-07-01T01:18:09Z) - PMC-LLaMA: Towards Building Open-source Language Models for Medicine [62.39105735933138]
Large Language Models (LLMs) have showcased remarkable capabilities in natural language understanding.
LLMs struggle in domains that require precision, such as medical applications, due to their lack of domain-specific knowledge.
We describe the procedure for building a powerful, open-source language model specifically designed for medicine applications, termed as PMC-LLaMA.
arXiv Detail & Related papers (2023-04-27T18:29:05Z) - Are Large Language Models Ready for Healthcare? A Comparative Study on
Clinical Language Understanding [12.128991867050487]
Large language models (LLMs) have made significant progress in various domains, including healthcare.
In this study, we evaluate state-of-the-art LLMs within the realm of clinical language understanding tasks.
arXiv Detail & Related papers (2023-04-09T16:31:47Z) - Do We Still Need Clinical Language Models? [15.023633270864675]
We show that relatively small specialized clinical models substantially outperform all in-context learning approaches.
We release the code and the models used under the PhysioNet Credentialed Health Data license and data use agreement.
arXiv Detail & Related papers (2023-02-16T05:08:34Z) - Domain-Specific Language Model Pretraining for Biomedical Natural
Language Processing [73.37262264915739]
We show that for domains with abundant unlabeled text, such as biomedicine, pretraining language models from scratch results in substantial gains.
Our experiments show that domain-specific pretraining serves as a solid foundation for a wide range of biomedical NLP tasks.
arXiv Detail & Related papers (2020-07-31T00:04:15Z) - oLMpics -- On what Language Model Pre-training Captures [84.60594612120173]
We propose eight reasoning tasks, which require operations such as comparison, conjunction, and composition.
A fundamental challenge is to understand whether the performance of a LM on a task should be attributed to the pre-trained representations or to the process of fine-tuning on the task data.
arXiv Detail & Related papers (2019-12-31T12:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.