Demonstration of a Response Time Based Remaining Useful Life (RUL)
Prediction for Software Systems
- URL: http://arxiv.org/abs/2307.12237v1
- Date: Sun, 23 Jul 2023 06:06:38 GMT
- Title: Demonstration of a Response Time Based Remaining Useful Life (RUL)
Prediction for Software Systems
- Authors: Ray Islam (Mohammad Rubyet Islam), Peter Sandborn
- Abstract summary: Prognostic and Health Management (PHM) has been widely applied to hardware systems in the electronics and non-electronics domains.
This paper addresses the application of PHM concepts to software systems for fault predictions and RUL estimation.
- Score: 0.966840768820136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prognostic and Health Management (PHM) has been widely applied to hardware
systems in the electronics and non-electronics domains but has not been
explored for software. While software does not decay over time, it can degrade
over release cycles. Software health management is confined to diagnostic
assessments that identify problems, whereas prognostic assessment potentially
indicates when in the future a problem will become detrimental. Relevant
research areas such as software defect prediction, software reliability
prediction, predictive maintenance of software, software degradation, and
software performance prediction, exist, but all of these represent diagnostic
models built upon historical data, none of which can predict an RUL for
software. This paper addresses the application of PHM concepts to software
systems for fault predictions and RUL estimation. Specifically, this paper
addresses how PHM can be used to make decisions for software systems such as
version update and upgrade, module changes, system reengineering, rejuvenation,
maintenance scheduling, budgeting, and total abandonment. This paper presents a
method to prognostically and continuously predict the RUL of a software system
based on usage parameters (e.g., the numbers and categories of releases) and
performance parameters (e.g., response time). The model developed has been
validated by comparing actual data, with the results that were generated by
predictive models. Statistical validation (regression validation, and k-fold
cross validation) has also been carried out. A case study, based on publicly
available data for the Bugzilla application is presented. This case study
demonstrates that PHM concepts can be applied to software systems and RUL can
be calculated to make system management decisions.
Related papers
- Size biased Multinomial Modelling of detection data in Software testing [1.7532822703595772]
We make use of the bug size or the eventual bug size which helps us to determine reliability of software more precisely.
The model has been validated through simulation and subsequently used for a critical space application software testing data.
arXiv Detail & Related papers (2024-05-24T17:57:34Z) - Analyzing the Influence of Processor Speed and Clock Speed on Remaining Useful Life Estimation of Software Systems [0.9831489366502301]
This research extends the analysis to assess how changes in environmental attributes, such as operating system and clock speed, affect RUL estimation in software.
Findings are rigorously validated using real performance data from controlled test beds and compared with predictive model-generated data.
This exploration yields actionable knowledge for software maintenance and optimization strategies.
arXiv Detail & Related papers (2023-09-22T04:46:34Z) - Applying Machine Learning Analysis for Software Quality Test [0.0]
It is critical to comprehend what triggers maintenance and if it may be predicted.
Numerous methods of assessing the complexity of created programs may produce useful prediction models.
In this paper, the machine learning is applied on the available data to calculate the cumulative software failure levels.
arXiv Detail & Related papers (2023-05-16T06:10:54Z) - Prediction-Powered Inference [68.97619568620709]
Prediction-powered inference is a framework for performing valid statistical inference when an experimental dataset is supplemented with predictions from a machine-learning system.
The framework yields simple algorithms for computing provably valid confidence intervals for quantities such as means, quantiles, and linear and logistic regression coefficients.
Prediction-powered inference could enable researchers to draw valid and more data-efficient conclusions using machine learning.
arXiv Detail & Related papers (2023-01-23T18:59:28Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
We demonstrate an end-to-end framework to improve the resilience of man-made systems to unforeseen events.
The framework is based on a physics-based digital twin model and three modules tasked with real-time fault diagnosis, prognostics and reconfiguration.
arXiv Detail & Related papers (2022-08-30T20:16:17Z) - Cloud Failure Prediction with Hierarchical Temporary Memory: An
Empirical Assessment [64.73243241568555]
Hierarchical Temporary Memory (HTM) is an unsupervised learning algorithm inspired by the features of the neocortex.
This paper presents the first systematic study that assesses HTM in the context of failure prediction.
arXiv Detail & Related papers (2021-10-06T07:09:45Z) - Machine Learning Techniques for Software Quality Assurance: A Survey [5.33024001730262]
We discuss various approaches in both fault prediction and test case prioritization.
Recent studies deep learning algorithms for fault prediction help to bridge the gap between programs' semantics and fault prediction features.
arXiv Detail & Related papers (2021-04-29T00:37:27Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
Remaining Useful Life (RUL) estimation is the problem of inferring how long a certain industrial asset can be expected to operate.
In this work, we consider Deep Gaussian Processes (DGPs) as possible solutions to the aforementioned limitations.
The performance of the algorithms is evaluated on the N-CMAPSS dataset from NASA for aircraft engines.
arXiv Detail & Related papers (2021-04-08T08:50:44Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
Anomalies or failures in large computer systems, such as the cloud, have an impact on a large number of users.
We propose a framework for anomaly detection in log data, as a major troubleshooting source of system information.
arXiv Detail & Related papers (2021-02-23T09:17:05Z) - Uncovering the Underlying Physics of Degrading System Behavior Through a
Deep Neural Network Framework: The Case of Remaining Useful Life Prognosis [0.0]
We propose an open-box approach using a deep neural network framework to explore the physics of degradation.
The framework has three stages, and it aims to discover a latent variable and corresponding PDE to represent the health state of the system.
arXiv Detail & Related papers (2020-06-10T21:05:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.