Analyzing the Influence of Processor Speed and Clock Speed on Remaining Useful Life Estimation of Software Systems
- URL: http://arxiv.org/abs/2309.12617v3
- Date: Fri, 16 Aug 2024 16:10:27 GMT
- Title: Analyzing the Influence of Processor Speed and Clock Speed on Remaining Useful Life Estimation of Software Systems
- Authors: M. Rubyet Islam, Peter Sandborn,
- Abstract summary: This research extends the analysis to assess how changes in environmental attributes, such as operating system and clock speed, affect RUL estimation in software.
Findings are rigorously validated using real performance data from controlled test beds and compared with predictive model-generated data.
This exploration yields actionable knowledge for software maintenance and optimization strategies.
- Score: 0.9831489366502301
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Prognostics and Health Management (PHM) is a discipline focused on predicting the point at which systems or components will cease to perform as intended, typically measured as Remaining Useful Life (RUL). RUL serves as a vital decision-making tool for contingency planning, guiding the timing and nature of system maintenance. Historically, PHM has primarily been applied to hardware systems, with its application to software only recently explored. In a recent study we introduced a methodology and demonstrated how changes in software can impact the RUL of software. However, in practical software development, real-time performance is also influenced by various environmental attributes, including operating systems, clock speed, processor performance, RAM, machine core count and others. This research extends the analysis to assess how changes in environmental attributes, such as operating system and clock speed, affect RUL estimation in software. Findings are rigorously validated using real performance data from controlled test beds and compared with predictive model-generated data. Statistical validation, including regression analysis, supports the credibility of the results. The controlled test bed environment replicates and validates faults from real applications, ensuring a standardized assessment platform. This exploration yields actionable knowledge for software maintenance and optimization strategies, addressing a significant gap in the field of software health management.
Related papers
- Early Detection of Performance Regressions by Bridging Local Performance Data and Architectural Models [12.581051275141537]
During software development, developers often make numerous modifications to the software to address existing issues or implement new features.
To ensure that the performance of new software releases does not degrade, existing practices rely on system-level performance testing.
We propose a novel approach to early detection of performance regressions by bridging the local performance data generated by component-level testing and the system-level architectural models.
arXiv Detail & Related papers (2024-08-15T13:33:20Z) - An Effective Software Risk Prediction Management Analysis of Data Using Machine Learning and Data Mining Method [10.608932697201274]
The appropriate prioritisation of software project risks is a crucial factor in ascertaining the software project's performance features and eventual success.
We present a sequential augmentation parameter optimisation technique that captures the interdependencies of the latest deep learning state-of-the-art WF attack models.
An experimental validation with NASA 93 dataset and 93 software project values was performed.
arXiv Detail & Related papers (2024-06-13T04:11:01Z) - Efficacy of static analysis tools for software defect detection on open-source projects [0.0]
The study used popular analysis tools such as SonarQube, PMD, Checkstyle, and FindBugs to perform the comparison.
The study results show that SonarQube performs considerably well than all other tools in terms of its defect detection.
arXiv Detail & Related papers (2024-05-20T19:05:32Z) - Demonstration of a Response Time Based Remaining Useful Life (RUL)
Prediction for Software Systems [0.966840768820136]
Prognostic and Health Management (PHM) has been widely applied to hardware systems in the electronics and non-electronics domains.
This paper addresses the application of PHM concepts to software systems for fault predictions and RUL estimation.
arXiv Detail & Related papers (2023-07-23T06:06:38Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
We discuss a paradigm shift from static evaluation methods to adaptive testing.
This involves estimating the characteristics and value of each test item in the benchmark and dynamically adjusting items in real-time.
We analyze the current approaches, advantages, and underlying reasons for adopting psychometrics in AI evaluation.
arXiv Detail & Related papers (2023-06-18T09:54:33Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - Improving the Performance of Robust Control through Event-Triggered
Learning [74.57758188038375]
We propose an event-triggered learning algorithm that decides when to learn in the face of uncertainty in the LQR problem.
We demonstrate improved performance over a robust controller baseline in a numerical example.
arXiv Detail & Related papers (2022-07-28T17:36:37Z) - Lifelong Learning Metrics [63.8376359764052]
The DARPA Lifelong Learning Machines (L2M) program seeks to yield advances in artificial intelligence (AI) systems.
This document outlines a formalism for constructing and characterizing the performance of agents performing lifelong learning scenarios.
arXiv Detail & Related papers (2022-01-20T16:29:14Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
We introduce a set of benchmark problems to take a step towards unified benchmarks and evaluation protocols.
We propose four representative physical systems, as well as a collection of both widely used classical time-based and representative data-driven methods.
arXiv Detail & Related papers (2021-08-09T17:39:09Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
Remaining Useful Life (RUL) estimation is the problem of inferring how long a certain industrial asset can be expected to operate.
In this work, we consider Deep Gaussian Processes (DGPs) as possible solutions to the aforementioned limitations.
The performance of the algorithms is evaluated on the N-CMAPSS dataset from NASA for aircraft engines.
arXiv Detail & Related papers (2021-04-08T08:50:44Z) - Computational framework for real-time diagnostics and prognostics of
aircraft actuation systems [0.0]
This work addresses the three phases of the prognostic flow: signal acquisition, Fault Detection and Identification, and Remaining Useful Life estimation.
To achieve this goal, we propose to combine information from physical models of different fidelity with machine learning techniques.
The methodology is assessed for the FDI and RUL estimation of an aircraft electromechanical actuator for secondary flight controls.
arXiv Detail & Related papers (2020-09-30T12:53:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.