論文の概要: Evaluating Emotional Nuances in Dialogue Summarization
- arxiv url: http://arxiv.org/abs/2307.12371v1
- Date: Sun, 23 Jul 2023 16:46:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 16:32:18.708277
- Title: Evaluating Emotional Nuances in Dialogue Summarization
- Title(参考訳): 対話要約における感情ニュアンスの評価
- Authors: Yongxin Zhou, Fabien Ringeval, Fran\c{c}ois Portet
- Abstract要約: 研究の大部分は事実情報を要約することに重点を置いており、情緒的な内容は別として残している。
トレーニングセットを感情的対話のみに短縮することで、感情的内容が生成した要約の中でより保存されることが示される。
- 参考スコア(独自算出の注目度): 5.556906034471034
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Automatic dialogue summarization is a well-established task that aims to
identify the most important content from human conversations to create a short
textual summary. Despite recent progress in the field, we show that most of the
research has focused on summarizing the factual information, leaving aside the
affective content, which can yet convey useful information to analyse, monitor,
or support human interactions. In this paper, we propose and evaluate a set of
measures $PEmo$, to quantify how much emotion is preserved in dialog summaries.
Results show that, summarization models of the state-of-the-art do not preserve
well the emotional content in the summaries. We also show that by reducing the
training set to only emotional dialogues, the emotional content is better
preserved in the generated summaries, while conserving the most salient factual
information.
- Abstract(参考訳): 自動対話要約は、人間の会話から最も重要なコンテンツを識別し、短いテキスト要約を作成することを目的とした、十分に確立されたタスクである。
この分野の最近の進歩にもかかわらず、研究の大部分は事実情報の要約に重点を置いており、人間のインタラクションの分析、監視、支援に有用な情報を伝達できる情緒的な内容は別として残されている。
本稿では,対話要約にどれだけの感情が保存されているかを定量化するために,$PEmo$の一連の尺度を提案し,評価する。
その結果, 要約モデルでは, 要約中の感情的内容がよく保存されないことがわかった。
また,学習セットを感情対話のみに還元することで,生成した要約文に感情内容が保存され,最も有意義な事実情報を保存できることを示した。
関連論文リスト
- Increasing faithfulness in human-human dialog summarization with Spoken Language Understanding tasks [0.0]
本稿では,タスク関連情報を組み込むことによって,要約処理の促進を図ることを提案する。
その結果,タスク関連情報とモデルを統合することで,単語の誤り率が異なる場合でも要約精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-09-16T08:15:35Z) - Context Does Matter: Implications for Crowdsourced Evaluation Labels in Task-Oriented Dialogue Systems [57.16442740983528]
クラウドソースラベルは、タスク指向の対話システムを評価する上で重要な役割を果たす。
従来の研究では、アノテーションプロセスで対話コンテキストの一部だけを使用することが提案されている。
本研究では,対話文脈がアノテーション品質に及ぼす影響について検討する。
論文 参考訳(メタデータ) (2024-04-15T17:56:39Z) - SWING: Balancing Coverage and Faithfulness for Dialogue Summarization [67.76393867114923]
本稿では,自然言語推論(NLI)モデルを用いて,事実の不整合を回避し,カバレッジを向上させることを提案する。
我々は、NLIを用いて詳細なトレーニング信号を計算し、モデルがカバーされていない参照サマリーのコンテンツを生成することを奨励する。
DialogSumおよびSAMSumデータセットの実験により,提案手法の有効性が確認された。
論文 参考訳(メタデータ) (2023-01-25T09:33:11Z) - Human-in-the-loop Abstractive Dialogue Summarization [61.4108097664697]
我々は、異なるレベルの人間のフィードバックをトレーニングプロセスに組み込むことを提案する。
これにより、モデルをガイドして、人間が要約に用いている振る舞いを捉えることができます。
論文 参考訳(メタデータ) (2022-12-19T19:11:27Z) - ED-FAITH: Evaluating Dialogue Summarization on Faithfulness [35.73012379398233]
まず,対話要約のための忠実度尺度の体系的研究を行った。
我々は,ほとんどの指標が,ニュースデータセットでよく機能しているにもかかわらず,人間の判断と相関が低いことを観察した。
忠実度評価のための新しい尺度T0-Scoreを提案する。
論文 参考訳(メタデータ) (2022-11-15T19:33:50Z) - Analyzing and Evaluating Faithfulness in Dialogue Summarization [67.07947198421421]
まず,対話要約の忠実度に関するきめ細かな人間の分析を行い,生成した要約の35%以上がソース対話に忠実に一致していないことを観察する。
そこで本研究では,ルールベース変換により生成した複数選択質問を用いたモデルレベルの忠実度評価手法を提案する。
論文 参考訳(メタデータ) (2022-10-21T07:22:43Z) - Enhancing Semantic Understanding with Self-supervised Methods for
Abstractive Dialogue Summarization [4.226093500082746]
本稿では,対話要約モデルを訓練するための欠点を補う自己教師型手法を提案する。
我々の原理は,対話文表現の文脈化能力を高めるために,前文対話文を用いて不整合情報の流れを検出することである。
論文 参考訳(メタデータ) (2022-09-01T07:51:46Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
我々は、さまざまなオンライン会話形式のニュースコメント、ディスカッションフォーラム、コミュニティ質問応答フォーラム、電子メールスレッドに関する4つの新しいデータセットをクラウドソースする。
我々は、データセットの最先端モデルをベンチマークし、データに関連する特徴を分析します。
論文 参考訳(メタデータ) (2021-06-01T22:17:13Z) - Topic-Oriented Spoken Dialogue Summarization for Customer Service with
Saliency-Aware Topic Modeling [61.67321200994117]
顧客サービスシステムでは、長い音声対話のための要約を作成することにより、対話要約はサービス効率を高めることができる。
本研究では,高度に抽象的な要約を生成するトピック指向の対話要約に注目した。
SATM(Saliency-Awareural topic Model)と併用し,顧客サービス対話のトピック指向要約を目的とした,新しいトピック拡張型2段階対話要約器(TDS)を提案する。
論文 参考訳(メタデータ) (2020-12-14T07:50:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。