論文の概要: Uncertainty-aware Grounded Action Transformation towards Sim-to-Real
Transfer for Traffic Signal Control
- arxiv url: http://arxiv.org/abs/2307.12388v1
- Date: Sun, 23 Jul 2023 17:35:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 16:20:53.637936
- Title: Uncertainty-aware Grounded Action Transformation towards Sim-to-Real
Transfer for Traffic Signal Control
- Title(参考訳): 交通信号制御のためのSim-to-Real転送に向けた不確実な接地行動変換
- Authors: Longchao Da, Hao Mei, Romir Sharma and Hua Wei
- Abstract要約: 本稿では,UGAT と呼ばれる実世界のシミュレーション(シミュレート・トゥ・リアル)トランスファー手法を提案する。
本手法は,実世界における移動RLポリシーの性能を大幅に向上させることを示す。
- 参考スコア(独自算出の注目度): 2.3696961713697577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic signal control (TSC) is a complex and important task that affects the
daily lives of millions of people. Reinforcement Learning (RL) has shown
promising results in optimizing traffic signal control, but current RL-based
TSC methods are mainly trained in simulation and suffer from the performance
gap between simulation and the real world. In this paper, we propose a
simulation-to-real-world (sim-to-real) transfer approach called UGAT, which
transfers a learned policy trained from a simulated environment to a real-world
environment by dynamically transforming actions in the simulation with
uncertainty to mitigate the domain gap of transition dynamics. We evaluate our
method on a simulated traffic environment and show that it significantly
improves the performance of the transferred RL policy in the real world.
- Abstract(参考訳): 交通信号制御(tsc)は、数百万人の日常生活に影響を与える複雑で重要なタスクである。
強化学習(rl)は交通信号制御の最適化に有望な結果を示しているが、現在のrlベースのtsc法は主にシミュレーションで訓練され、シミュレーションと実世界のパフォーマンスギャップに苦しむ。
本稿では, シミュレーション中の動作を不確実性で動的に変換することで, シミュレーション環境から実世界環境へ学習した学習方針を伝達し, 遷移力学の領域ギャップを緩和する, UGAT と呼ばれるシミュレーションから実世界への移行手法を提案する。
本手法をシミュレーションした交通環境において評価し,実環境におけるトランスファーrlポリシーの性能を著しく向上させることを示す。
関連論文リスト
- LoopSR: Looping Sim-and-Real for Lifelong Policy Adaptation of Legged Robots [20.715834172041763]
本稿では,生涯にわたるポリシー適応フレームワークであるLoopSRを提案する。
さらなる改善のためにシミュレーションで現実世界の環境を再構築する。
継続的なトレーニングを活用することで、LoopSRは強力なベースラインに比べて優れたデータ効率を達成する。
論文 参考訳(メタデータ) (2024-09-26T16:02:25Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
効果的なシミュレーションの鍵となる要素は、人間の知識と整合した現実的な交通モデルの導入である。
本研究では,現実主義に対する人間の嗜好のニュアンスを捉えることと,多様な交通シミュレーションモデルを統合することの2つの主な課題を明らかにする。
論文 参考訳(メタデータ) (2023-09-01T19:29:53Z) - Prompt to Transfer: Sim-to-Real Transfer for Traffic Signal Control with
Prompt Learning [4.195122359359966]
大規模言語モデル(LLM)は大量知識に基づいて訓練されており、驚くべき推論能力を備えていることが判明した。
本研究では,LLMを利用してシステムダイナミクスの理解と解析を行う。
論文 参考訳(メタデータ) (2023-08-28T03:49:13Z) - A Platform-Agnostic Deep Reinforcement Learning Framework for Effective Sim2Real Transfer towards Autonomous Driving [0.0]
深層強化学習(DRL)は複雑なタスクの解決に顕著な成功を収めた。
シミュレーションと現実の間に大きな違いがあるため、DRLエージェントを現実世界に転送することは依然として困難である。
本稿では、プラットフォームに依存した認識モジュールを利用してタスク関連情報を抽出する頑健なDRLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-14T07:55:07Z) - Provable Sim-to-real Transfer in Continuous Domain with Partial
Observations [39.18274543757048]
シン・トゥ・リアル・トランスファー(英語版)は、シミュレーション環境でRLエージェントを訓練し、実世界で展開する。
実環境における最適政策と競合するシミュレートされた環境から、人気のある頑健な対人訓練アルゴリズムが、ポリシーを学習できることを示す。
論文 参考訳(メタデータ) (2022-10-27T16:37:52Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z) - Predicting Sim-to-Real Transfer with Probabilistic Dynamics Models [3.7692466417039814]
本稿では,RL ポリシーの sim-to-real 転送性能を予測する手法を提案する。
確率力学モデルはポリシーに沿って訓練され、実世界の軌道の固定セットで評価される。
論文 参考訳(メタデータ) (2020-09-27T15:06:54Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
強化学習(Reinforcement Learning, RL)は、複雑なロボットタスクを解決する強力なツールである。
RL は sim-to-real transfer problem として知られる現実世界では直接作用しない。
本稿では,点雲と環境ランダム化によって構築された観測空間を学習する手法を提案する。
論文 参考訳(メタデータ) (2020-07-27T17:46:59Z) - RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real [74.45688231140689]
本稿では、画像翻訳におけるRL-scene整合性損失を導入し、画像に関連付けられたQ値に対して変換操作が不変であることを保証する。
RL-CycleGANは実世界のシミュレーションから実世界への変換による強化学習のための新しい手法である。
論文 参考訳(メタデータ) (2020-06-16T08:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。