A Machine Learning Approach to Two-Stage Adaptive Robust Optimization
- URL: http://arxiv.org/abs/2307.12409v2
- Date: Thu, 7 Dec 2023 15:25:37 GMT
- Title: A Machine Learning Approach to Two-Stage Adaptive Robust Optimization
- Authors: Dimitris Bertsimas, Cheol Woo Kim
- Abstract summary: We propose an approach based on machine learning to solve two-stage linear adaptive robust optimization problems.
We encode the optimal here-and-now decisions, the worst-case scenarios associated with the optimal here-and-now decisions, and the optimal wait-and-see decisions.
We train a machine learning model that predicts high-quality strategies for the here-and-now decisions, the worst-case scenarios associated with the optimal here-and-now decisions, and the wait-and-see decisions.
- Score: 6.943816076962257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an approach based on machine learning to solve two-stage linear
adaptive robust optimization (ARO) problems with binary here-and-now variables
and polyhedral uncertainty sets. We encode the optimal here-and-now decisions,
the worst-case scenarios associated with the optimal here-and-now decisions,
and the optimal wait-and-see decisions into what we denote as the strategy. We
solve multiple similar ARO instances in advance using the column and constraint
generation algorithm and extract the optimal strategies to generate a training
set. We train a machine learning model that predicts high-quality strategies
for the here-and-now decisions, the worst-case scenarios associated with the
optimal here-and-now decisions, and the wait-and-see decisions. We also
introduce an algorithm to reduce the number of different target classes the
machine learning algorithm needs to be trained on. We apply the proposed
approach to the facility location, the multi-item inventory control and the
unit commitment problems. Our approach solves ARO problems drastically faster
than the state-of-the-art algorithms with high accuracy.
Related papers
- Learning Multiple Initial Solutions to Optimization Problems [52.9380464408756]
Sequentially solving similar optimization problems under strict runtime constraints is essential for many applications.
We propose learning to predict emphmultiple diverse initial solutions given parameters that define the problem instance.
We find significant and consistent improvement with our method across all evaluation settings and demonstrate that it efficiently scales with the number of initial solutions required.
arXiv Detail & Related papers (2024-11-04T15:17:19Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Optimizing Inventory Routing: A Decision-Focused Learning Approach using
Neural Networks [0.0]
We formulate and propose a decision-focused learning-based approach to solving real-world IRPs.
This approach directly integrates inventory prediction and routing optimization within an end-to-end system potentially ensuring a robust supply chain strategy.
arXiv Detail & Related papers (2023-11-02T04:05:28Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Reinforcement Learning Methods for Wordle: A POMDP/Adaptive Control
Approach [0.3093890460224435]
We address the solution of the popular Wordle puzzle, using new reinforcement learning methods.
For the Wordle puzzle, they yield on-line solution strategies that are very close to optimal at relatively modest computational cost.
arXiv Detail & Related papers (2022-11-15T03:46:41Z) - Online Control of Adaptive Large Neighborhood Search using Deep Reinforcement Learning [4.374837991804085]
We introduce a Deep Reinforcement Learning based approach called DR-ALNS that selects operators, adjusts parameters, and controls the acceptance criterion throughout the search.
We evaluate the proposed method on a problem with orienteering weights and time windows, as presented in an IJCAI competition.
The results show that our approach outperforms vanilla ALNS, ALNS tuned with Bayesian optimization, and two state-of-the-art DRL approaches.
arXiv Detail & Related papers (2022-11-01T21:33:46Z) - Efficient Learning of Decision-Making Models: A Penalty Block Coordinate
Descent Algorithm for Data-Driven Inverse Optimization [12.610576072466895]
We consider the inverse problem where we use prior decision data to uncover the underlying decision-making process.
This statistical learning problem is referred to as data-driven inverse optimization.
We propose an efficient block coordinate descent-based algorithm to solve large problem instances.
arXiv Detail & Related papers (2022-10-27T12:52:56Z) - Machine Learning for K-adaptability in Two-stage Robust Optimization [0.40964539027092906]
Two-stage robust optimization problems constitute one of the hardest optimization problem classes.
One of the solution approaches to this class of problems is K-adaptability.
We propose a machine learning-based node selection strategy.
arXiv Detail & Related papers (2022-10-20T10:43:23Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.