論文の概要: Model-free generalized fiducial inference
- arxiv url: http://arxiv.org/abs/2307.12472v2
- Date: Mon, 06 Oct 2025 22:25:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-08 17:57:07.762464
- Title: Model-free generalized fiducial inference
- Title(参考訳): モデルなし一般化フィデューシアル推論
- Authors: Jonathan P Williams,
- Abstract要約: 等角予測(CP)は有限サンプル確率予測を保証するために開発された。
CPアルゴリズムは、不確実性定量化に対する比較的汎用的なアプローチであり、有限サンプル保証は、汎用性に欠ける。
本稿では,不正確な確率論から,CPと一般化フィデューシャル(GF)推論の間の公式な接続を構築するためのツールを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conformal prediction (CP) was developed to provide finite-sample probabilistic prediction guarantees. While CP algorithms are a relatively general-purpose approach to uncertainty quantification, with finite-sample guarantees, they lack versatility. Namely, the CP approach does not {\em prescribe} how to quantify the degree to which a data set provides evidence in support of (or against) an arbitrary event from a general class of events. In this paper, tools are offered from imprecise probability theory to build a formal connection between CP and generalized fiducial (GF) inference. These new insights establish a more general inferential lens from which CP can be understood, and demonstrate the pragmatism of fiducial ideas. The formal connection establishes a context in which epistemically-derived GF probability matches aleatoric/frequentist probability. Beyond this fact, it is illustrated how tools from imprecise probability theory, namely lower and upper probability functions, can be applied in the context of the imprecise GF distribution to provide posterior-like, prescriptive inference that is not possible within the CP framework alone. In addition to the primary CP generalization that is contributed, fundamental connections are synthesized between this new model-free GF and three other areas of contemporary research: nonparametric predictive inference (NPI), conformal predictive systems/distributions, and inferential models (IMs).
- Abstract(参考訳): 等角予測(CP)は有限サンプル確率予測を保証するために開発された。
CPアルゴリズムは不確実性定量化に対する比較的汎用的なアプローチであるが、有限サンプル保証を持つため、汎用性に欠ける。
すなわち、CPアプローチは、データセットが一般的なイベントのクラスから任意のイベントを支持する(または反対に)証拠を提供する程度を定量化する方法を定めていない。
本稿では,不正確な確率論から,CPと一般化フィデューシャル(GF)推論の間の公式な接続を構築するためのツールを提案する。
これらの新たな洞察は、CPが理解できるより一般的な推論レンズを確立し、フィデューカルなアイデアのプラグマティズムを実証する。
形式接続は、エピステマティックから派生したGF確率がアレタリック/周波数確率と一致する文脈を確立する。
この事実以外にも、不正確な確率論、すなわち下および上確率関数のツールを不正確なGF分布の文脈で適用して、CPフレームワークだけでは不可能な後続的な規範的推論を提供する方法が示されている。
非パラメトリック予測推論(NPI)、共形予測システム/分布、推論モデル(IM)という3つの現代研究領域の基本的な関係が合成される。
関連論文リスト
- Credal Prediction based on Relative Likelihood [24.307076055306148]
本稿では,相対可能性の統計的概念に基づいて,断裂予測に関する理論的基礎的アプローチを提案する。
このような方法で定義されたクレダル集合を適切に修正したアンサンブル学習手法により近似する問題に取り組む。
論文 参考訳(メタデータ) (2025-05-28T13:20:20Z) - Probabilistic Modeling of Disparity Uncertainty for Robust and Efficient Stereo Matching [61.73532883992135]
本稿では,新しい不確実性を考慮したステレオマッチングフレームワークを提案する。
我々はベイズリスクを不確実性の測定として採用し、データを別々に見積もり、不確実性をモデル化する。
論文 参考訳(メタデータ) (2024-12-24T23:28:20Z) - Generative Conformal Prediction with Vectorized Non-Conformity Scores [6.059745771017814]
コンフォーマル予測は、保証されたカバレッジでモデルに依存しない不確実性定量化を提供する。
ベクトル化された非整合性スコアを持つ生成共形予測フレームワークを提案する。
我々は密度ランクの不確かさ球を用いた適応不確かさ集合を構築する。
論文 参考訳(メタデータ) (2024-10-17T16:37:03Z) - On Information-Theoretic Measures of Predictive Uncertainty [5.8034373350518775]
その重要性にも拘わらず、予測の不確実性の正しい測定に関するコンセンサスはいまだに解明されていない。
提案手法は, 予測の不確かさを, (I) 予測モデル (II) 真の予測分布の近似の2つの要因により分類する。
本研究では, 誤分類検出, 選択的予測, アウト・オブ・ディストリビューション検出など, 典型的な不確実性推定設定において, これらの指標を実証的に評価する。
論文 参考訳(メタデータ) (2024-10-14T17:52:18Z) - Introducing an Improved Information-Theoretic Measure of Predictive
Uncertainty [6.3398383724486544]
予測の不確実性は、ベイズ平均(BMA)予測分布のエントロピーによってよく測定される。
これらの制限を克服するために理論的に根ざした尺度を導入する。
提案手法は, 制御された合成タスクにおいて, より合理的に振る舞う。
論文 参考訳(メタデータ) (2023-11-14T16:55:12Z) - Model-agnostic variable importance for predictive uncertainty: an entropy-based approach [1.912429179274357]
既存の説明可能性の手法が不確実性を考慮したモデルにどのように拡張できるかを示す。
我々は、不確実性の原因とモデル性能への影響の両方を理解するために、これらのアプローチの有用性を実証する。
論文 参考訳(メタデータ) (2023-10-19T15:51:23Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Quantifying Deep Learning Model Uncertainty in Conformal Prediction [1.4685355149711297]
コンフォーマル予測(Conformal Prediction)は、モデルの不確実性を表現するための有望なフレームワークである。
本稿では,最先端CP手法とその理論的基礎について考察する。
論文 参考訳(メタデータ) (2023-06-01T16:37:50Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
認識の不確実性は、学習者の知識の欠如によるサンプル外の予測エラーの一部である。
一般化誤差の予測を学習し, aleatoric uncertaintyの推定を減算することで, 認識的不確かさを直接推定する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T23:50:35Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
自動運転車などの安全クリティカルなシステムには、定量化または少なくとも上限の不確実性が不可欠です。
マハラノビス距離に基づく統計的テストにより、厳しい品質基準である不確実性リアリズムを評価します。
自動車分野に採用し、プレーンエンコーダデコーダモデルと比較して、不確実性リアリズムを大幅に改善することを示した。
論文 参考訳(メタデータ) (2021-01-08T11:56:12Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。