Policy Gradient Optimal Correlation Search for Variance Reduction in
Monte Carlo simulation and Maximum Optimal Transport
- URL: http://arxiv.org/abs/2307.12703v2
- Date: Fri, 15 Sep 2023 15:43:25 GMT
- Title: Policy Gradient Optimal Correlation Search for Variance Reduction in
Monte Carlo simulation and Maximum Optimal Transport
- Authors: Pierre Bras, Gilles Pag\`es
- Abstract summary: We propose a new algorithm for variance reduction when estimating $f(X_T)$ where $X$ is the solution to some differential equation and $f$ is a test function.
The new estimator is $(f(XT) + f(X2_T))/2$, where $X1$ and $X2$ have same marginal law as $X2$ but are pathwise correlated so that to reduce the variance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new algorithm for variance reduction when estimating $f(X_T)$
where $X$ is the solution to some stochastic differential equation and $f$ is a
test function. The new estimator is $(f(X^1_T) + f(X^2_T))/2$, where $X^1$ and
$X^2$ have same marginal law as $X$ but are pathwise correlated so that to
reduce the variance. The optimal correlation function $\rho$ is approximated by
a deep neural network and is calibrated along the trajectories of $(X^1, X^2)$
by policy gradient and reinforcement learning techniques. Finding an optimal
coupling given marginal laws has links with maximum optimal transport.
Related papers
- Differential Private Stochastic Optimization with Heavy-tailed Data: Towards Optimal Rates [15.27596975662702]
We explore algorithms achieving optimal rates of DP optimization with heavy-tailed gradients.
Our results match the minimax lower bound in citekamath2022, indicating that the theoretical limit of convex optimization under DP is achievable.
arXiv Detail & Related papers (2024-08-19T11:07:05Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity [121.83085611327654]
We structured convex optimization problems with additive objective $r:=p + q$, where $r$ is $mu$-strong convex similarity.
We proposed a method to solve problems master to agents' communication and local calls.
The proposed method is much sharper than the $mathcalO(sqrtL_q/mu)$ method.
arXiv Detail & Related papers (2022-05-30T14:28:02Z) - TURF: A Two-factor, Universal, Robust, Fast Distribution Learning
Algorithm [64.13217062232874]
One of its most powerful and successful modalities approximates every distribution to an $ell$ distance essentially at most a constant times larger than its closest $t$-piece degree-$d_$.
We provide a method that estimates this number near-optimally, hence helps approach the best possible approximation.
arXiv Detail & Related papers (2022-02-15T03:49:28Z) - Saddle Point Optimization with Approximate Minimization Oracle [8.680676599607125]
A major approach to saddle point optimization $min_xmax_y f(x, y)$ is a gradient based approach as is popularized by generative adversarial networks (GANs)
In contrast, we analyze an alternative approach relying only on an oracle that solves a minimization problem approximately.
Our approach locates approximate solutions $x'$ and $y'$ to $min_x'f(x', y)$ at a given point $(x, y)$ and updates $(x, y)$ toward these approximate solutions $(x', y'
arXiv Detail & Related papers (2021-03-29T23:03:24Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Accelerating Optimization and Reinforcement Learning with
Quasi-Stochastic Approximation [2.294014185517203]
This paper sets out to extend convergence theory to quasi-stochastic approximations.
It is illustrated with applications to gradient-free optimization and policy gradient algorithms for reinforcement learning.
arXiv Detail & Related papers (2020-09-30T04:44:45Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.