論文の概要: Formal description of ML models for unambiguous implementation
- arxiv url: http://arxiv.org/abs/2307.12713v1
- Date: Mon, 24 Jul 2023 11:49:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 14:31:24.582199
- Title: Formal description of ML models for unambiguous implementation
- Title(参考訳): 曖昧な実装のためのMLモデルの形式的記述
- Authors: Adrien Gauffriau, Claire Pagetti
- Abstract要約: 我々は、訓練されたモデルのトレース可能な分散と並列化の最適化を可能にするために、nnef言語を拡張することを提案する。
このような仕様が Xavier プラットフォーム上で cuda でどのように実装できるかを示す。
- 参考スコア(独自算出の注目度): 2.28438857884398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implementing deep neural networks in safety critical systems, in particular
in the aeronautical domain, will require to offer adequate specification
paradigms to preserve the semantics of the trained model on the final hardware
platform. We propose to extend the nnef language in order to allow traceable
distribution and parallelisation optimizations of a trained model. We show how
such a specification can be implemented in cuda on a Xavier platform.
- Abstract(参考訳): 安全クリティカルシステム、特に航空分野におけるディープニューラルネットワークの実装には、最終ハードウェアプラットフォーム上でトレーニングされたモデルのセマンティクスを保持するための適切な仕様パラダイムを提供する必要がある。
学習モデルのトレーサブルな分散と並列化最適化を可能にするために,nnef言語の拡張を提案する。
このような仕様が Xavier プラットフォーム上で cuda でどのように実装できるかを示す。
関連論文リスト
- Structural Pruning of Pre-trained Language Models via Neural Architecture Search [7.833790713816726]
事前学習された言語モデル(PLM)は、ラベル付きデータに基づいて微調整された自然言語理解タスクの最先端である。
本稿では, 最適トレードオフ効率を有する微調整ネットワークのサブ部分を見つけるために, 構造解析のためのニューラルアーキテクチャ探索(NAS)について検討する。
論文 参考訳(メタデータ) (2024-05-03T17:34:57Z) - Low-resource neural machine translation with morphological modeling [3.3721926640077804]
ニューラルマシン翻訳(NMT)における形態的モデリングは、オープン語彙機械翻訳を実現するための有望なアプローチである。
低リソース環境における複雑な形態をモデル化するためのフレームワークソリューションを提案する。
パブリックドメインのパラレルテキストを用いた英訳であるKinyarwandaについて,提案手法の評価を行った。
論文 参考訳(メタデータ) (2024-04-03T01:31:41Z) - On Conditional and Compositional Language Model Differentiable Prompting [75.76546041094436]
プロンプトは、下流タスクでうまく機能するために、凍結した事前訓練言語モデル(PLM)を適応するための効果的な方法であることが示されている。
タスク命令や入力メタデータを連続的なプロンプトに変換することを学習する新しいモデル Prompt Production System (PRopS) を提案する。
論文 参考訳(メタデータ) (2023-07-04T02:47:42Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
データ変換による任意のモデルE(3)-同変や不変化を実現するために,フレームアラグリング(SFA)に依存したフレキシブルなフレームワークを導入する。
本手法の有効性を理論的および実験的に証明し, 材料モデリングにおける精度と計算スケーラビリティを実証する。
論文 参考訳(メタデータ) (2023-04-28T21:48:31Z) - PDSketch: Integrated Planning Domain Programming and Learning [86.07442931141637]
我々は PDSketch という新しいドメイン定義言語を提案する。
これにより、ユーザーはトランジションモデルで柔軟にハイレベルな構造を定義できる。
移行モデルの詳細は、トレーニング可能なニューラルネットワークによって満たされる。
論文 参考訳(メタデータ) (2023-03-09T18:54:12Z) - Semantic Diffusion Network for Semantic Segmentation [1.933681537640272]
セマンティック境界認識を強化する演算子レベルのアプローチを導入する。
意味拡散ネットワーク(SDN)と呼ばれる新しい学習可能なアプローチを提案する。
我々のSDNは、元の機能からクラス間境界強化機能への微分可能なマッピングを構築することを目的としています。
論文 参考訳(メタデータ) (2023-02-04T01:39:16Z) - Structured Reordering for Modeling Latent Alignments in Sequence
Transduction [86.94309120789396]
本稿では,分離可能な置換の辺りを正確に推定する効率的な動的プログラミングアルゴリズムを提案する。
結果のSeq2seqモデルは、合成問題やNLPタスクの標準モデルよりも体系的な一般化が優れている。
論文 参考訳(メタデータ) (2021-06-06T21:53:54Z) - Fast Text-Only Domain Adaptation of RNN-Transducer Prediction Network [0.0]
RNNトランスデューサモデルは,少量のテキストデータのみを用いて,新しいドメインに効果的に適応できることを示した。
本稿では,複数のASR評価タスクを用いて,目標タスクWERにおける相対的な10〜45%の利得が得られる方法を示す。
論文 参考訳(メタデータ) (2021-04-22T15:21:41Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Deep Conditional Transformation Models [0.0]
特徴集合上の結果変数条件の累積分布関数(CDF)を学習することは依然として困難である。
条件変換モデルは、条件付きCDFの大規模なクラスをモデル化できる半パラメトリックなアプローチを提供する。
我々は,新しいネットワークアーキテクチャを提案し,異なるモデル定義の詳細を提供し,適切な制約を導出する。
論文 参考訳(メタデータ) (2020-10-15T16:25:45Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
画像合成のために訓練されたGAN(Generative Adversarial Networks)の潜在空間に、解釈可能な次元の豊富なセットが出現することが示されている。
本研究では,GANが学習した内部表現について検討し,その基礎となる変動要因を教師なしで明らかにする。
本稿では,事前学習した重みを直接分解することで,潜在意味発見のためのクローズドフォーム因数分解アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-13T18:05:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。