論文の概要: Low-resource neural machine translation with morphological modeling
- arxiv url: http://arxiv.org/abs/2404.02392v1
- Date: Wed, 3 Apr 2024 01:31:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 18:59:11.093700
- Title: Low-resource neural machine translation with morphological modeling
- Title(参考訳): 形態モデルを用いた低リソースニューラルマシン翻訳
- Authors: Antoine Nzeyimana,
- Abstract要約: ニューラルマシン翻訳(NMT)における形態的モデリングは、オープン語彙機械翻訳を実現するための有望なアプローチである。
低リソース環境における複雑な形態をモデル化するためのフレームワークソリューションを提案する。
パブリックドメインのパラレルテキストを用いた英訳であるKinyarwandaについて,提案手法の評価を行った。
- 参考スコア(独自算出の注目度): 3.3721926640077804
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Morphological modeling in neural machine translation (NMT) is a promising approach to achieving open-vocabulary machine translation for morphologically-rich languages. However, existing methods such as sub-word tokenization and character-based models are limited to the surface forms of the words. In this work, we propose a framework-solution for modeling complex morphology in low-resource settings. A two-tier transformer architecture is chosen to encode morphological information at the inputs. At the target-side output, a multi-task multi-label training scheme coupled with a beam search-based decoder are found to improve machine translation performance. An attention augmentation scheme to the transformer model is proposed in a generic form to allow integration of pre-trained language models and also facilitate modeling of word order relationships between the source and target languages. Several data augmentation techniques are evaluated and shown to increase translation performance in low-resource settings. We evaluate our proposed solution on Kinyarwanda - English translation using public-domain parallel text. Our final models achieve competitive performance in relation to large multi-lingual models. We hope that our results will motivate more use of explicit morphological information and the proposed model and data augmentations in low-resource NMT.
- Abstract(参考訳): ニューラルマシン翻訳(NMT)における形態的モデリングは、形態学的に豊富な言語に対するオープン語彙機械翻訳を実現するための有望なアプローチである。
しかし、サブワードトークン化や文字ベースモデルのような既存の手法は、単語の表面形式に限られている。
本研究では,低リソース環境下での複雑な形態をモデル化するためのフレームワークソリューションを提案する。
入力時の形態情報を符号化する2層トランスアーキテクチャが選択される。
ターゲット側出力では、ビームサーチベースデコーダと組み合わせたマルチタスクマルチラベルトレーニングスキームが機械翻訳性能を向上させる。
学習済み言語モデルの統合と,ソースとターゲット言語間の単語順序関係のモデリングを容易にするため,トランスフォーマモデルへの注意増強スキームが汎用形式で提案されている。
いくつかのデータ拡張手法を評価し,低リソース環境での翻訳性能の向上を図った。
パブリックドメインのパラレルテキストを用いた英訳であるKinyarwandaについて,提案手法の評価を行った。
最終モデルは,大規模多言語モデルと競合する性能を実現する。
この結果が,低リソースNMTにおける明示的な形態情報の利用と,提案したモデルとデータ拡張の促進につながることを期待する。
関連論文リスト
- Efficient Machine Translation with a BiLSTM-Attention Approach [0.0]
本稿では,翻訳品質の向上を目的とした新しいSeq2Seqモデルを提案する。
このモデルでは、双方向長短期記憶ネットワーク(Bidirectional Long Short-Term Memory Network, Bi-LSTM)をエンコーダとして使用し、入力シーケンスのコンテキスト情報をキャプチャする。
現在の主流トランスフォーマーモデルと比較して,本モデルはWMT14機械翻訳データセットにおいて優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-10-29T01:12:50Z) - Using Machine Translation to Augment Multilingual Classification [0.0]
複数の言語にまたがる分類課題に対して,機械翻訳を用いて多言語モデルを微調整する効果について検討する。
翻訳されたデータは、多言語分類器をチューニングするのに十分な品質であり、この新規な損失技術は、それなしでチューニングされたモデルよりも幾らか改善できることを示す。
論文 参考訳(メタデータ) (2024-05-09T00:31:59Z) - TAMS: Translation-Assisted Morphological Segmentation [3.666125285899499]
正準形態素セグメンテーションのためのシーケンス・ツー・シーケンスモデルを提案する。
我々のモデルは、超低リソース設定においてベースラインよりも優れるが、トレーニング分割とより多くのデータとの混合結果が得られる。
高いリソース設定で翻訳を便利にするためには、さらなる作業が必要であるが、我々のモデルは、リソース制約の厳しい設定で、約束を示す。
論文 参考訳(メタデータ) (2024-03-21T21:23:35Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
既存の機械翻訳(NMT)研究は主にデータセット固有のモデルの開発に焦点を当てている。
我々は,NMT(UMLNMT)のための統一モデル学習モデル(Unified Model Learning for NMT)を提案する。
OurNMTは、データセット固有のモデルよりも大幅に改善され、モデルデプロイメントコストが大幅に削減される。
論文 参考訳(メタデータ) (2023-05-04T12:21:52Z) - Exploiting Multilingualism in Low-resource Neural Machine Translation
via Adversarial Learning [3.2258463207097017]
Generative Adversarial Networks (GAN) はニューラルマシン翻訳(NMT)に有望なアプローチを提供する
GANでは、バイリンガルモデルと同様に、マルチリンガルNTTはモデルトレーニング中に各文の参照翻訳を1つだけ考慮している。
本稿では,DAASI(Denoising Adversarial Auto-Encoder-based Sentence Interpolation)アプローチによる文計算を提案する。
論文 参考訳(メタデータ) (2023-03-31T12:34:14Z) - Pre-Training a Graph Recurrent Network for Language Representation [34.4554387894105]
本稿では,言語モデルの事前学習のためのグラフリカレントネットワークについて考察し,各シーケンスのグラフ構造を局所的なトークンレベルの通信で構築する。
我々のモデルは、既存の注意に基づくモデルよりもコンテキスト化された特徴冗長性が少なく、より多様な出力を生成することができる。
論文 参考訳(メタデータ) (2022-09-08T14:12:15Z) - Modeling Target-Side Morphology in Neural Machine Translation: A
Comparison of Strategies [72.56158036639707]
形態的に豊かな言語は機械翻訳に困難をもたらす。
多数の異なる屈折する単語曲面は、より大きな語彙を必要とする。
いくつかの頻度の低い用語は、通常、トレーニングコーパスには現れない。
言語的合意は、出力文中の屈折語形間の文法的カテゴリを正しく一致させる必要がある。
論文 参考訳(メタデータ) (2022-03-25T10:13:20Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Pre-training Multilingual Neural Machine Translation by Leveraging
Alignment Information [72.2412707779571]
mRASPは、汎用多言語ニューラルマシン翻訳モデルを事前訓練するためのアプローチである。
我々は,低,中,豊かな資源を含む多種多様な環境における42の翻訳方向の実験を行い,エキゾチックな言語対への変換を行った。
論文 参考訳(メタデータ) (2020-10-07T03:57:54Z) - Learning Source Phrase Representations for Neural Machine Translation [65.94387047871648]
本稿では,対応するトークン表現から句表現を生成可能な注意句表現生成機構を提案する。
実験では,強力なトランスフォーマーベースライン上でのWMT 14の英語・ドイツ語・英語・フランス語タスクにおいて,大幅な改善が得られた。
論文 参考訳(メタデータ) (2020-06-25T13:43:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。