The irreversibility of relativistic time-dilation
- URL: http://arxiv.org/abs/2307.12778v2
- Date: Tue, 29 Aug 2023 17:30:02 GMT
- Title: The irreversibility of relativistic time-dilation
- Authors: Marcos L. W. Basso, Jonas Maziero, Lucas C. C\'eleri
- Abstract summary: We study the question of how the time-dilation effect enters into the fluctuation relations.
We conclude that a positive entropy production emerges as a consequence of both the special relativistic and the gravitational (enclosed in the equivalence principle) time-dilation effects.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fluctuation relations, which characterize irreversible processes in
Nature, are among the most important results in non-equilibrium physics. In
short, these relations say that it is exponentially unlikely for us to observe
a time-reversed process and, thus, establish the thermodynamic arrow of time
pointing from low to high entropy. On the other hand, fundamental physical
theories are invariant under time-reversal symmetry. Although in Newtonian and
quantum physics the emergence of irreversible processes, as well as fluctuation
relations, is relatively well understood, many problems arise when relativity
enters the game. In this work, by considering a specific class of spacetimes,
we explore the question of how the time-dilation effect enters into the
fluctuation relations. We conclude that a positive entropy production emerges
as a consequence of both the special relativistic and the gravitational
(enclosed in the equivalence principle) time-dilation effects.
Related papers
- A family of thermodynamic uncertainty relations valid for general fluctuation theorems [0.0]
We derive a family of TURs that explores higher order moments of the entropy production.
The resulting bound holds in both classical and quantum regimes.
We draw a connection between our TURs and the existence of correlations between the entropy production and the thermodynamic quantity under consideration.
arXiv Detail & Related papers (2024-07-15T02:00:53Z) - A link between static and dynamical perturbation theory [0.48951183832371004]
We show the role of emergent time as a vital link between time-independent and time-dependent theory in quantum mechanics.
Based on our results, we envision future applications for the calculation of dynamical phenomena based on a single pure energy eigenstate.
arXiv Detail & Related papers (2024-05-14T09:01:30Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Measurement events relative to temporal quantum reference frames [44.99833362998488]
We compare two consistent approaches to the Page-Wootters formalism to clarify the operational meaning of evolution and measurements.
We show that for non-ideal clocks, the purified measurement approach yields time non-local, non-unitary evolution.
arXiv Detail & Related papers (2023-08-21T18:26:12Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Effect of Measurement Backaction on Quantum Clock Precision Studied with
a Superconducting Circuit [13.318874561490933]
We study the precision of a quantum clock near zero temperature.
We find an equality for the precision of the clock in each regime.
We experimentally verify that our quantum clock obeys the kinetic uncertainty relation for the precision.
arXiv Detail & Related papers (2022-07-22T12:29:34Z) - Time and Evolution in Quantum and Classical Cosmology [68.8204255655161]
We show that it is neither necessary nor sufficient for the Poisson bracket between the time variable and the super-Hamiltonian to be equal to unity in all of the phase space.
We also discuss the question of switching between different internal times as well as the Montevideo interpretation of quantum theory.
arXiv Detail & Related papers (2021-07-02T09:17:55Z) - Irreversibility, Loschmidt echo, and thermodynamic uncertainty relation [4.111899441919164]
We consider the thermodynamic uncertainty relation, which states that a higher precision can be achieved at the cost of higher entropy production.
Considering the original and perturbed dynamics, we show that the precision of an arbitrary counting observable in continuous measurement of quantum Markov processes is bounded from below by Loschmidt echo.
arXiv Detail & Related papers (2021-01-18T01:42:11Z) - The Concept of Entropic Time: A Preliminary Discussion [0.0]
The concept of entropic time is introduced on the basis of information acquisition.
The atemporal nature of the collapse' of the state vector associated with such information gain is discussed.
It is shown that energy is conserved under subjective collapse schemes whereas, in general, under objective collapse it is not.
arXiv Detail & Related papers (2020-11-01T13:40:24Z) - Quantum superposition of thermodynamic evolutions with opposing time's
arrows [0.0]
We show that a definite thermodynamic time's arrow can be restored by a quantum measurement of entropy production.
Remarkably, for small values, the amplitudes of forward and time-reversal processes can interfere.
arXiv Detail & Related papers (2020-08-06T18:00:38Z) - Interference of Clocks: A Quantum Twin Paradox [39.645665748998816]
Phase of matter waves depends on proper time and is susceptible to special-relativistic (kinematic) and gravitational (redshift) time dilation.
It is conceivable that atom interferometers measure general-relativistic time-dilation effects.
We show that closed light-pulse interferometers without clock transitions during the pulse sequence are not sensitive to gravitational time dilation in a linear potential.
arXiv Detail & Related papers (2019-05-22T12:30:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.