A family of thermodynamic uncertainty relations valid for general fluctuation theorems
- URL: http://arxiv.org/abs/2407.10390v1
- Date: Mon, 15 Jul 2024 02:00:53 GMT
- Title: A family of thermodynamic uncertainty relations valid for general fluctuation theorems
- Authors: André M. Timpanaro,
- Abstract summary: We derive a family of TURs that explores higher order moments of the entropy production.
The resulting bound holds in both classical and quantum regimes.
We draw a connection between our TURs and the existence of correlations between the entropy production and the thermodynamic quantity under consideration.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Thermodynamic Uncertainty Relations (TURs) are relations that establish lower bounds for the relative fluctuations of thermodynamic quantities in terms of the statistics of the associated entropy production. In this work we derive a family of TURs that explores higher order moments of the entropy production and is valid in any situation a Fluctuation Theorem holds. The resulting bound holds in both classical and quantum regimes and can always be saturated. These TURs are shown in action for a two level system weakly coupled to a bath undergoing a non time-symmetric drive, where we can use the Tasaki-Crooks fluctuation theorem. Finally, we draw a connection between our TURs and the existence of correlations between the entropy production and the thermodynamic quantity under consideration.
Related papers
- Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Quantum relative entropy uncertainty relation [0.0]
For classic systems, the fluctuations of a current have a lower bound in terms of the entropy production.
We generalize this idea for quantum systems, where we find a lower bound for the uncertainty of quantum observables given in terms of the quantum relative entropy.
We apply the result to obtain a quantum thermodynamic uncertainty relation in terms of the quantum entropy production, valid for arbitrary dynamics and non-thermal environments.
arXiv Detail & Related papers (2023-09-15T18:58:51Z) - Quantum Thermodynamic Uncertainty Relations, Generalized Current
Fluctuations and Nonequilibrium Fluctuation-Dissipation Inequalities [0.0]
Thermodynamic uncertainty relations (TURs) represent one of the few broad-based and fundamental relations in our toolbox for tackling the thermodynamics of nonequilibrium systems.
We show how TURs are rooted in the quantum uncertainty principles and the fluctuation-dissipation inequalities (FDI) under fully nonequilibrium conditions.
arXiv Detail & Related papers (2022-06-20T15:26:53Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Unified thermodynamic-kinetic uncertainty relation [3.480626767752489]
We derive a tighter bound on the precision of currents in terms of both thermodynamic and kinetic quantities.
The unified thermodynamic-kinetic uncertainty relation leads to a tighter classical speed limit.
The proposed framework can be extended to apply to state observables and systems with unidirectional transitions.
arXiv Detail & Related papers (2022-03-22T07:22:16Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Fluctuation theorems and thermodynamic uncertainty relations [0.0]
We derive a new thermodynamic uncertainty relation which also applies to non-cyclic and time-reversal non-symmetric protocols.
We investigate the relation between the thermodynamic uncertainty relation and the correlation between the entropy and the observable.
arXiv Detail & Related papers (2021-09-12T12:42:13Z) - Entropy Production and the Role of Correlations in Quantum Brownian
Motion [77.34726150561087]
We perform a study on quantum entropy production, different kinds of correlations, and their interplay in the driven Caldeira-Leggett model of quantum Brownian motion.
arXiv Detail & Related papers (2021-08-05T13:11:05Z) - Irreversibility, Loschmidt echo, and thermodynamic uncertainty relation [4.111899441919164]
We consider the thermodynamic uncertainty relation, which states that a higher precision can be achieved at the cost of higher entropy production.
Considering the original and perturbed dynamics, we show that the precision of an arbitrary counting observable in continuous measurement of quantum Markov processes is bounded from below by Loschmidt echo.
arXiv Detail & Related papers (2021-01-18T01:42:11Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.