論文の概要: Causal Fair Machine Learning via Rank-Preserving Interventional Distributions
- arxiv url: http://arxiv.org/abs/2307.12797v2
- Date: Mon, 24 Jun 2024 12:51:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 05:08:33.798318
- Title: Causal Fair Machine Learning via Rank-Preserving Interventional Distributions
- Title(参考訳): ランク保存型干渉分布を用いた因果フェア機械学習
- Authors: Ludwig Bothmann, Susanne Dandl, Michael Schomaker,
- Abstract要約: 我々は、個人が架空の、規範的に望まれる(FiND)世界で等しければ、規範的に等しくなると定義する。
本研究では,それが保持する特定のFiND世界を定義するために,ランク保存的介入分布を提案する。
我々のワープアプローチは、最も差別された個人を効果的に識別し、不公平を緩和することを示します。
- 参考スコア(独自算出の注目度): 0.5062312533373299
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A decision can be defined as fair if equal individuals are treated equally and unequals unequally. Adopting this definition, the task of designing machine learning (ML) models that mitigate unfairness in automated decision-making systems must include causal thinking when introducing protected attributes: Following a recent proposal, we define individuals as being normatively equal if they are equal in a fictitious, normatively desired (FiND) world, where the protected attributes have no (direct or indirect) causal effect on the target. We propose rank-preserving interventional distributions to define a specific FiND world in which this holds and a warping method for estimation. Evaluation criteria for both the method and the resulting ML model are presented and validated through simulations. Experiments on empirical data showcase the practical application of our method and compare results with "fairadapt" (Ple\v{c}ko and Meinshausen, 2020), a different approach for mitigating unfairness by causally preprocessing data that uses quantile regression forests. With this, we show that our warping approach effectively identifies the most discriminated individuals and mitigates unfairness.
- Abstract(参考訳): 決定は、等しい個人が平等に扱われ、不平等に扱われる場合、公平に定義することができる。
この定義を採用すると、自動意思決定システムにおける不公平性を緩和する機械学習(ML)モデルを設計するタスクには、保護された属性を導入する際の因果的思考を含む必要がある。
本研究では,それが保持する特定のFiND世界と推定のためのワープ方法を定義するために,ランク保存型の介入分布を提案する。
本手法と結果のMLモデルの評価基準をシミュレーションにより提示し,検証した。
実証データを用いた実験では,本手法の実用化を実証し,定量的回帰林を用いた因果前処理データによる不公平を緩和するための異なるアプローチである"fairadapt"(Ple\v{c}ko, Meinshausen, 2020)と比較した。
これにより、我々のワープアプローチは、最も差別された個人を効果的に識別し、不公平を軽減できることが示される。
関連論文リスト
- Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
我々は、初めて因果レンズから公正性と正確性の間の張力を分析する。
因果的制約を強制することは、しばしば人口集団間の格差を減少させることを示す。
因果制約付きフェアラーニングのための新しいニューラルアプローチを導入する。
論文 参考訳(メタデータ) (2024-05-24T11:19:52Z) - Evaluating the Fairness of Discriminative Foundation Models in Computer
Vision [51.176061115977774]
本稿では,CLIP (Contrastive Language-Pretraining) などの差別基盤モデルのバイアス評価のための新しい分類法を提案する。
そして、これらのモデルにおけるバイアスを緩和するための既存の手法を分類学に関して体系的に評価する。
具体的には,ゼロショット分類,画像検索,画像キャプションなど,OpenAIのCLIPとOpenCLIPモデルをキーアプリケーションとして評価する。
論文 参考訳(メタデータ) (2023-10-18T10:32:39Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Aleatoric and Epistemic Discrimination: Fundamental Limits of Fairness Interventions [13.279926364884512]
機械学習モデルは、モデル開発時の選択とデータ固有のバイアスにより、特定の人口群で過小評価される可能性がある。
フェアネス制約下でのモデルの性能限界を決定することにより,アレータリック判別の定量化を行う。
本研究では, 公平性制約を適用した際のモデルの精度と, アレタリック判別による限界とのギャップとして, てんかんの判別を定量化する。
論文 参考訳(メタデータ) (2023-01-27T15:38:20Z) - fAux: Testing Individual Fairness via Gradient Alignment [2.5329739965085785]
いずれの要件も持たない個別の公正性をテストするための新しいアプローチについて述べる。
提案手法は,合成データセットと実世界のデータセットの識別を効果的に行う。
論文 参考訳(メタデータ) (2022-10-10T21:27:20Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
加速度予測感度は、入力特徴の摂動に対するモデルの予測感度に基づいて、機械学習モデルの公正度を測定する。
この計量は、群フェアネス(統計パリティ)と個人フェアネスという特定の概念と理論的に関連付けられることを示す。
論文 参考訳(メタデータ) (2022-03-16T15:00:33Z) - Personalized Trajectory Prediction via Distribution Discrimination [78.69458579657189]
トラリミー予測は将来の力学のマルチモーダルな性質を捉えるジレンマと対立する。
本研究では,パーソナライズされた動作パターンを予測するDisDisDis(Disdis)手法を提案する。
本手法は,プラグイン・アンド・プレイモジュールとして既存のマルチモーダル予測モデルと統合することができる。
論文 参考訳(メタデータ) (2021-07-29T17:42:12Z) - Unfairness Discovery and Prevention For Few-Shot Regression [9.95899391250129]
歴史データの識別(あるいは偏見)に敏感な教師付き数発メタラーニングモデルの公平性について検討する。
偏りのあるデータに基づいてトレーニングされた機械学習モデルは、少数グループのユーザに対して不公平な予測を行う傾向がある。
論文 参考訳(メタデータ) (2020-09-23T22:34:06Z) - Adversarial Learning for Counterfactual Fairness [15.302633901803526]
近年、フェアネスは機械学習研究コミュニティにおいて重要なトピックとなっている。
我々は,MDDの罰則よりも強力な推論を可能にする,対向的ニューラルネットワークアプローチに頼ることを提案する。
実験では、離散的および連続的な設定の両方に対して、対実的公正性の観点から、顕著な改善が示された。
論文 参考訳(メタデータ) (2020-08-30T09:06:03Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z) - Learning Individually Fair Classifier with Path-Specific Causal-Effect
Constraint [31.86959207229775]
本稿では,個々に公平な分類器を学習するための枠組みを提案する。
個人不公平(PIU)の確率を定義し、データから推定できるPIUの上界がゼロに近いように制御される最適化問題を解く。
実験結果から,本手法は精度のわずかなコストで,個別に公平な分類器を学習できることが示唆された。
論文 参考訳(メタデータ) (2020-02-17T02:46:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。